TOPSIS(优劣解距离)法
1. 基本概念
C. L.Hwang和 K.Yoon于1981年首次提出 TOPSIS(Technique for Order Preference by Similarity to an Ideal Solution),可翻译为逼近理想解排序法,国内常简称为优劣解距离法。
TOPSIS法是一种常用的综合评价方法,能充实利用原始数据的信息,其效果能正确地反映各评价方案之间的差距。
TOPSIS法引入了两个基本概念:
- 理想解:假想的最优的解(方案),它的各个属性值都达到各备选方案中的最好的值;
- 负理想解:假想的最劣的解(方案),它的各个属性值都达到各备选方案中的最坏的值。方案排序的规则是把各备选方案与理想解和负理想解做比较,若此中有一个方案最接近理想解,而同时又远离负理想解,则该方案是备选方案中最好的方案。TOPSIS通过最接近理想解且最远离负理想解来确定最优选择。
2. 模型原理
TOPSIS法是一种理想目标相似性的次序选优技能,在多目标决策分析中是一种非常有效的方法。它通过归一化后(去量纲化)的数据规范化矩阵,找出多个目标中最优目标和最劣目标(分别用理归想一解化和反理想解表示),分别计算各评价目标与理想解和反理想解的距离,得到各目标与理想解的贴近度,按理想解贴近度的大小排序,以此作为评价目标优劣的依据。贴近度取值在0~1之间,该值愈接近1,表示相应的评价目标越接近最优水平;反之,该值愈接近0,表示评价目标越接近最劣水平。
3. 基本步调
- 将原始矩阵正向化
将原始矩阵正向化,就是要将全部的指标范例同一转化为极大型指标
- 将正向化矩阵尺度化
尺度化的方法有很多种,其重要目的就是去除量纲的影响,保证差别评价指标在同一数目级,且数据大小排序不
- 计算得分并归一化
S i = D i − D i + + D i − S_{i}=\frac{D_{i}^{-}}{D_{i}^{+}+D_{i}^{-}} Si=Di++Di−Di−,此中 S i S_{i} Si为得分, D i + {D_{i}^{+}} Di+为评价对象与最大值的距离, D i − D_{i}^{-} Di−
为评价对象与最小值的距离。
4. 典范例题
明星Kun想找一个对象,但喜欢他的人太多,不知道怎么选,颠末层层考察,留下三个候选人。他认为身高165是最好的,体重在90-100斤是最好的。
候选人颜值牌气(争吵次数)身高体重A910175120B8716480C6315790 4.1 矩阵正向化
常见的指标范例:
指标名称指标特点例子极大型 (效益型) 指标越大(多)越好成绩、 GDP增速、 企业利润极小型 (本钱型) 指标越小(少)越好费用、 坏品率、污染程度中心型指标越接近某个值越好水质量评估时的PH值区间型指标落在某个区间最好体温、 水中植物性营养物量 在 TOPSIS 方法中,就是要将全部指标举行同一正向化,即同一转化为极大型指标。 那么就必要极小型、中心型以及区间型的指标举行转化为极大型指标。
指标名称公式极大型(效益型)指标/极小型(本钱型)指标 x ~ = m a x − x \tilde{x} = max-x x~=max−x, x ~ \tilde{x} x~为指标值, m a x max max为指标最大值, x x x为指标值中心型指标 { x i } \{x_i\} {xi} 是一组中心型序列,最优值是 x b e s t x_{best} xbest,$M = max{区间型指标 x i {x_i} xi是一组区间型序列,最佳区间为 [ a , b ] [a,b] [a,b],正向化公式如下 M = m a x { a − m i n { x i } , m a x { x i } − b } , x ~ i = { 1 − a − x i M , x i < a 1 , a ≤ x i ≤ b 1 − x i − b M , x i > b M=max\{a-min\{x_i\}, max\{x_i\}-b\}, \widetilde{x}_i=\begin{cases}1-\frac{a-x_i}{M}, x_i<a\\1, a\leq x_i\leq b\\1-\frac{x_i-b}{M}, x_i>b\end{cases} M=max{a−min{xi},max{xi}−b},x i=⎩ ⎨ ⎧1−Ma−xi,xi<a1,a≤xi≤b1−Mxi−b,xi>b
- 颜值为极大型指标
- 脾气为极小型指标
候选人颜值 m a x max max m a x − x max-x max−xA10100B7103C3107
- 身高为中心型指标
候选人身高 x b e s t x_{best} xbest| x i − x b e s t x_i-x_{best} xi−xbest| x ^ i \hat{x}_i x^iA175165101B16416511/10C15716588/10
- 体重为区间型指标
候选人体重 M M M x ^ i \hat{x}_i x^iA120200B80201/2C90201
正向化后的矩阵为
候选人颜值牌气(争吵次数)身高体重A9000B830.90.5C670.21 4.2 正向矩阵尺度化
尺度化的目的是消除差别指标量纲的影响
假设有n个要评价的对象,m个评价指标(已经正向化了)构成的正向化矩阵如下:
X = [ x 11 x 12 ⋯ x 1 m x 21 x 22 ⋯ x 2 m ⋮ ⋮ ⋱ ⋮ x n 1 x n 2 ⋯ x n m ] X=\begin{bmatrix}x_{11}&x_{12}&\cdots&x_{1m}\\x_{21}&x_{22}&\cdots&x_{2m}\\\vdots&\vdots&\ddots&\vdots\\x_{n1}&x_{n2}&\cdots&x_{nm}\end{bmatrix} X= x11x21⋮xn1x12x22⋮xn2⋯⋯⋱⋯x1mx2m⋮xnm
那么对其尺度化后的矩阵记为Z,Z的每一个元素:
z i j = x i j ∑ i = 1 n x i j 2 z_{ij}=\frac{x_{ij}}{\sqrt{\sum_{i=1}^nx_{ij}^2}} zij=∑i=1nxij2 xij
即(每一个元素/根号下地点列元素的平方和)得到尺度化矩阵Z:
Z = [ z 11 z 12 ⋯ z 1 m z 21 z 22 ⋯ z 2 m ⋮ ⋮ ⋱ ⋮ z n 1 z n 2 ⋯ z n m ] Z=\begin{bmatrix}z_{11}&z_{12}&\cdots&z_{1m}\\z_{21}&z_{22}&\cdots&z_{2m}\\\vdots&\vdots&\ddots&\vdots\\z_{n1}&z_{n2}&\cdots&z_{nm}\end{bmatrix} Z= z11z21⋮zn1z12z22⋮zn2⋯⋯⋱⋯z1mz2m⋮znm
尺度化后,还必要给差别指标加上权重,接纳的权重确定方法有层次分析法、熵权法、Delphi法、对数最小二乘法。这里认为各个指标权重雷同。
对上述矩阵举行尺度化,得
候选人颜值牌气(争吵次数)身高体重A0.669000B0.5950.3940.9760.447C0.4460.9190.2170.894 4.3 计算得分并归一化
定义最大值:
Z + = ( m a x { z 11 , z 21 , ⋯ , z n 1 } , m a x { z 12 , z 22 , ⋯ , z n 2 } , ⋯ , m a x { z 1 m , z 2 m , ⋯ , z n m } ) Z^+=(max\{z_{11},z_{21},\cdots,z_{n1}\},max\{z_{12},z_{22},\cdots,z_{n2}\},\cdots,max\{z_{1m},z_{2m},\cdots,z_{nm}\}) Z+=(max{z11,z21,⋯,zn1},max{z12,z22,⋯,zn2},⋯,max{z1m,z2m,⋯,znm})
定义最小值:
Z − = ( m i n { z 11 , z 21 , ⋯ , z n 1 } , m i n { z 12 , z 22 , ⋯ , z n 2 } , ⋯ , m i n { z 1 m , z 2 m , ⋯ , z n m } ) Z^-=(min\{z_{11},z_{21},\cdots,z_{n1}\},min\{z_{12},z_{22},\cdots,z_{n2}\},\cdots,min\{z_{1m},z_{2m},\cdots,z_{nm}\}) Z−=(min{z11,z21,⋯,zn1},min{z12,z22,⋯,zn2},⋯,min{z1m,z2m,⋯,znm})
定义第i (i=1,2,…,n) 个评价对象与最大值的距离:
D i + = ∑ j = 1 m ( Z j + − z i j ) 2 D_i^+=\sqrt{\sum_{j=1}^m(Z_j^+-z_{ij})^2} Di+=j=1∑m(Zj+−zij)2
定义第i (i=1,2,…,n) 个评价对象与最小值的距离:
D i − = ∑ j = 1 m ( Z j − − z i j ) 2 D_i^-=\sqrt{\sum_{j=1}^m(Z_j^--z_{ij})^2} Di−=j=1∑m(Zj−−zij)2
那么,我们可以计算得出第 i( i=1,2,…,n) 个评价对象未归一化的得分:
S i = D i − D i + + D i − S_i=\frac{D_i^-}{D_i^++D_i^-} Si=Di++Di−Di−
很显着 0≤Si≤1,且 Si 越大 Di+ 越小,即越接近最大值。
我们可以将得分归一化并换成百分制:
S i ~ = S i ∑ i = 1 n S i × 100 \widetilde{S_{\mathrm{i}}}=\frac{S_{\mathrm{i}}}{\sum_{i=1}^{n}S_{\mathrm{i}}}\times100 Si =∑i=1nSiSi×100
4.4 python代码实现
- import numpy as np
- # 从用户输入参评数目和指标数目
- print("请输入参评数目:")
- n = int(input())
- print("请输入指标数目:")
- m = int(input())
- # 接受用户输入的类型矩阵
- print("请输入类型矩阵:1. 极大型 2. 极小型 3. 中间型 4.区间型")
- kind = input().split(" ")
- # 接受用户输入的矩阵并转化为向量
- print("请输入矩阵:")
- A = np.zeros(shape=(n, m))
- for i in range(n):
- A[i] = input().split(" ")
- A[i] = list(map(float, A[i]))
- print("输入矩阵为:\n{}".format(A))
- # 极小型指标转化为极大型指标的函数
- def minTomax(maxx, x):
- x = list(x)
- ans = [[(maxx-e) for e in x]]
- return np.array(ans)
- # 中间型指标转化为极大型指标的函数
- def midTomax(bestx, x):
- x = list(x)
- h = [abs(e-bestx) for e in x]
- M = max(h)
- if M == 0:
- M = 1 # 防止最大差值为0的情况
- ans = [[1-(e/M) for e in h]]
- return np.array(ans)
- # 区间型指标转化为极大型指标的函数
- def regTomax(lowx, highx, x):
- x = list(x)
- M = max(lowx-min(x), max(x)-highx)
- if M == 0:
- M = 1 # 防止最大差值为0的情况
- ans = []
- for i in range(len(x)):
- if x[i] < lowx:
- ans.append(1-(lowx-x[i])/M)
- elif x[i] > highx:
- ans.append(1-(x[i]-highx)/M)
- else:
- ans.append(1)
- return np.array([ans])
- # 同一指标类型,将所有指标转化为极大型指标
- X = np.zeros(shape=(n, 1))
- for i in range(m):
- if kind[i] == "1":
- v = np.array(A[:, i])
- elif kind[i] == "2":
- maxA = max(A[:, i])
- v = minTomax(maxA, A[:, i])
- elif kind[i] == "3":
- print("类型三,请输入最优值:")
- bestA = eval(input())
- v = midTomax(bestA, A[:, i])
- elif kind[i] == "4":
- print("类型四,请输入区间[a,b]值a:")
- lowA = eval(input())
- print("类型四,请输入区间[a,b]值b:")
- highA = eval(input())
- v = regTomax(lowA, highA, A[:, i])
- if i == 0:
- X = v.reshape(-1, 1) # 如果是第一个指标,直接赋值
- else:
- X = np.hstack((X, v.reshape(-1, 1))) # 如果不是第一个指标,横向拼接
- print("统一指标后矩阵为:\n{}".format(X))
- # 对统一指标后的矩阵进行标准化处理
- X = X.astype(float) # 将X转化为浮点型
- for i in range(m):
- X[:, i] = X[:, i]/np.sqrt(sum(X[:, i]**2)) # 对每一列进行归一化处理,即除以该列的欧几里得范数
- print("标准化后矩阵为:\n{}".format(X))
- # 最大值和最小值距离的计算
- x_max = np.max(X, axis=0) # 计算每一列的最大值
- x_min = np.min(X, axis=0) # 计算每一列的最小值
- # 计算每一个参评对象与最优情况的距离d+
- d_z = np.sqrt(np.sum(np.square(X-np.tile(x_max, (n, 1))), axis=1))
- # 计算每一个参评对象与最差情况的距离d-
- d_f = np.sqrt(np.sum(np.square(X-np.tile(x_min, (n, 1))), axis=1))
- print("每个指标的最大值为:{}".format(x_max))
- print("每个指标的最小值为:{}".format(x_min))
- # 计算每一个参评对象的综合得分
- s = d_f/(d_f+d_z) # 根据d+和d-计算每一个参评对象的得分,其中s接近1表示越好,接近0表示越差
- Score = 100*s/sum(s) # 将得分转换为百分制
- for i in range(n):
- print(f"第{i+1}个参评对象的得分为:{Score[i]}")
复制代码 输入:
- 请输入参评数目:
- 3
- 请输入指标数目:
- 4
- 请输入类型矩阵:1. 极大型 2. 极小型 3. 中间型 4.区间型
- 1 2 3 4
- 请输入矩阵:
- 9 10 175 120
- 8 7 164 80
- 6 3 157 90
- 输入矩阵为:
- [[ 9. 10. 175. 120.]
- [ 8. 7. 164. 80.]
- [ 6. 3. 157. 90.]]
- 类型三,请输入最优值:
- 165
- 类型四,请输入区间[a,b]值a:
- 90
- 类型四,请输入区间[a,b]值b:
- 100
复制代码 输出:
- 统一指标后矩阵为:
- [[9. 0. 0. 0. ]
- [8. 3. 0.9 0.5]
- [6. 7. 0.2 1. ]]
- 标准化后矩阵为:
- [[0.66896473 0. 0. 0. ]
- [0.59463532 0.3939193 0.97618706 0.4472136 ]
- [0.44597649 0.91914503 0.21693046 0.89442719]]
- 每个指标的最大值为:[0.66896473 0.91914503 0.97618706 0.89442719]
- 每个指标的最小值为:[0.44597649 0. 0. 0. ]
- 第1个参评对象的得分为:8.886366735657832
- 第2个参评对象的得分为:45.653341055701134
- 第3个参评对象的得分为:45.46029220864103
复制代码 免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |