RT-DETR (Real-Time Detection Transformer) 是一种结合了 Transformer 和及时目标检测的创新模型架构。它旨在办理现有目标检测模型在速率和精度之间的权衡标题,通过引入高效的 Transformer 模块和优化的检测头,提升了模型的及时性和正确性。RT-DETR 可以直接用于端到端目标检测,省去了锚框设计,并且在推理阶段具有较高的速率。
RT-DETR 的主要特点
- 基于 Transformer 的高效目标检测
RT-DETR 使用 Transformer 布局来处置处罚特征提取和目标检测任务,能够通过自注意力机制捕获到全局的上下文信息。Transformer 的并行计算能力使得 RT-DETR 能够在大型数据集上保持较高的推理速率和检测精度。
- 及时性能优化
与传统的基于 CNN 的目标检测模型相比,RT-DETR 接纳了轻量化的设计,减少了计算复杂度,优化了推理时间。通过减少多余的特征提取层和非须要的卷积运算,RT-DETR 在及时检测任务中的表现非常精彩。
- 无锚框设计
RT-DETR 不依赖于锚框(anchor boxes),通过直接预测物体的界限框和类别,进步了模型的机动性和检测服从。这种 Anchor-Free 的检测方式不仅减少了超参数调优的工作量,还提升了小目标检测的性能。
- 高效的多尺度特征融合
RT-DETR 集成了多尺度特征融合模块,使模型能够同时处置处罚大中小差别尺寸的目标。在检测小目标时,模型的表现尤其优异。
- 端到端训练
RT-DETR 接纳了端到端的训练方式,不必要像传统的检测方法那样经过复杂的后处置处罚步骤,如非极大值克制(NMS)。这不仅进步了训练的服从,还减少了推理的复杂度。
RT-DETR 核心代码展示
以下是 RT-DETR 的简化核心代码示例,包含了 Transformer 的实现和检测头的设计。
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from torch.nn import TransformerEncoder, TransformerEncoderLayer
- # 1. 基本的 RT-DETR Backbone
- class Backbone(nn.Module):
- def __init__(self):
- super(Backbone, self).__init__()
- # 一个简单的卷积层模拟主干网络特征提取
- self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
- self.bn1 = nn.BatchNorm2d(64)
- self.relu = nn.ReLU(inplace=True)
- def forward(self, x):
- x = self.conv1(x)
- x = self.bn1(x)
- return self.relu(x)
- # 2. Transformer 编码器部分
- class TransformerEncoderModule(nn.Module):
- def __init__(self, d_model=256, nhead=8, num_layers=6):
- super(TransformerEncoderModule, self).__init__()
- encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead)
- self.transformer_encoder = TransformerEncoder(encoder_layer, num_layers=num_layers)
- def forward(self, x):
- # Transformer 输入前需要展平
- x = x.flatten(2).permute(2, 0, 1) # [batch_size, channels, h, w] -> [h*w, batch_size, channels]
- x = self.transformer_encoder(x)
- return x.permute(1, 2, 0).view(x.size(1), -1, int(x.size(0)**0.5), int(x.size(0)**0.5))
- # 3. 检测头部分
- class DetectionHead(nn.Module):
- def __init__(self, num_classes, d_model=256):
- super(DetectionHead, self).__init__()
- self.num_classes = num_classes
- # 分类预测
- self.class_head = nn.Linear(d_model, num_classes)
- # 边界框预测
- self.bbox_head = nn.Linear(d_model, 4)
- def forward(self, x):
- # 对每个特征图位置进行分类和边界框回归
- class_logits = self.class_head(x)
- bbox_reg = self.bbox_head(x)
- return class_logits, bbox_reg
- # 4. RT-DETR 总体结构
- class RTDETR(nn.Module):
- def __init__(self, num_classes=80):
- super(RTDETR, self).__init__()
- self.backbone = Backbone()
- self.transformer = TransformerEncoderModule()
- self.detection_head = DetectionHead(num_classes)
- def forward(self, x):
- # 1. 特征提取
- features = self.backbone(x)
- # 2. Transformer 编码
- transformer_out = self.transformer(features)
- # 3. 目标检测头进行分类和边界框预测
- class_logits, bbox_reg = self.detection_head(transformer_out)
- return class_logits, bbox_reg
复制代码 代码解析
- Backbone:模型的主干网络,用于提取输入图像的特征。在这个简朴示例中,使用了一个卷积层模拟特征提取的过程,现实实现中,RT-DETR 的 Backbone 可以是 ResNet、Swin Transformer 等网络。
- Transformer 编码器:RT-DETR 的核心模块,负责将提取到的特征输入 Transformer 编码器,通过自注意力机制捕获全局的上下文信息。在现实应用中,编码器的层数可以根据需求调解,默认情况下为 6 层。
- Detection Head:检测头负责对 Transformer 的输出进行处置处罚,包罗目标的类别分类和界限框的回归。RT-DETR 的检测头设计为 Anchor-Free,即不依赖锚框,直接预测目标的位置和类别。
在 RT-DETR 模型中,TransformerEncoder 和 TransformerEncoderLayer 是 Transformer 的核心模块。它们用于在序列数据(如特征图或文本)中捕获全局的上下文信息。Transformer 布局最初由 Vaswani 等人在《Attention is All You Need》论文中提出,广泛应用于自然语言处置处罚、目标检测和图像分类等任务。
1. TransformerEncoderLayer
TransformerEncoderLayer 是 Transformer 编码器的基本组成单元,它包含两个主要部门:
- 多头自注意力机制(Multi-Head Self-Attention, MHSA):这是 Transformer 的核心机制,它答应模型在每个时间步(或特征点)上关注输入序列中的所有其他时间步(或特征点),以获得全局的信息。这种机制通过加权平均处置处罚输入序列中的各个位置,使模型能够捕获到序列中的长距离依赖关系。
- 前馈神经网络(Feedforward Neural Network, FFN):每个 Transformer 编码器层中还包含一个独立的前馈神经网络,通常由两层线性变换和非线性激活函数组成。前馈网络在每个输入位置独立地处置处罚经过自注意力模块后的特征。
此外,TransformerEncoderLayer 使用残差毗连(Residual Connection)和层归一化(Layer Normalization)来确保梯度稳定并进步模型的收敛性。
核心组成:
- Self-Attention Layer(自注意力层):用于计算输入序列中每个元素相对于其他元素的重要性。
- Feedforward Network(前馈网络):对经过注意力机制处置处罚的效果进行进一步非线性转换。
- Layer Normalization(层归一化):在每个注意力和前馈网络之后应用,以稳定训练。
- Residual Connections(残差毗连):跳跃毗连用于避免梯度消失标题,确保深层网络的训练稳定。
代码示例:
- import torch.nn as nn
- class TransformerEncoderLayer(nn.Module):
- def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1):
- super(TransformerEncoderLayer, self).__init__()
- # 多头自注意力层
- self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
- # 前馈神经网络
- self.linear1 = nn.Linear(d_model, dim_feedforward)
- self.dropout = nn.Dropout(dropout)
- self.linear2 = nn.Linear(dim_feedforward, d_model)
- # 层归一化
- self.norm1 = nn.LayerNorm(d_model)
- self.norm2 = nn.LayerNorm(d_model)
-
- # Dropout
- self.dropout1 = nn.Dropout(dropout)
- self.dropout2 = nn.Dropout(dropout)
- def forward(self, src):
- # 自注意力机制
- src2 = self.self_attn(src, src, src)[0]
- # 残差连接和归一化
- src = src + self.dropout1(src2)
- src = self.norm1(src)
- # 前馈网络
- src2 = self.linear2(self.dropout(F.relu(self.linear1(src))))
- # 残差连接和归一化
- src = src + self.dropout2(src2)
- src = self.norm2(src)
- return src
复制代码 2. TransformerEncoder
TransformerEncoder 是由多个 TransformerEncoderLayer 叠加组成的团体编码器。它负责处置处罚输入序列,将其转换为一个更高层次的表现。编码器中的每一层都会渐渐对输入数据中的依赖关系进行建模,从而产生富有语义的全局特征表现。
关键特性:
- 多层堆叠:编码器可以包含多个 TransformerEncoderLayer,通常设置为 6 层或更多,以捕获输入序列的复杂依赖关系。
- 并行计算:Transformer 通过自注意力机制能够并行处置处罚整个输入序列,使其在处置处罚长序列时非常高效。
代码示例:
- import torch.nn as nn
- class TransformerEncoder(nn.Module):
- def __init__(self, encoder_layer, num_layers):
- super(TransformerEncoder, self).__init__()
- # 堆叠多层 Transformer 编码器层
- self.layers = nn.ModuleList([encoder_layer for _ in range(num_layers)])
- self.num_layers = num_layers
- def forward(self, src):
- # 依次通过每一层 Transformer 编码器层
- output = src
- for layer in self.layers:
- output = layer(output)
- return output
复制代码 工作流程:
- 输入数据经过 TransformerEncoderLayer 中的多头自注意力机制,每个时间步/特征点在整个输入序列的上下文中进行信息交流。
- 每层的输出被送入前馈神经网络进行进一步处置处罚。
- 多个 TransformerEncoderLayer 叠加起来,逐层细化输入的全局表现。
Transformer 的核心优势
- 捕获长距离依赖:自注意力机制可以直接建模序列中任意位置之间的依赖关系,无需像 RNN 那样渐渐传播信息,因此能够更高效地捕获长距离依赖。
- 并行处置处罚:Transformer 能够并行处置处罚整个序列,而不像 RNN 必要按次序处置处罚每个时间步。这使得 Transformer 在处置处罚大规模数据时具有更高的服从。
- 全局信息建模:通过多头自注意力机制,模型能够在差别的子空间中关注序列的差别部门,建模全局上下文关系。
TransformerEncoderLayer 和 TransformerEncoder 是 Transformer 布局的核心部门。它们使用自注意力机制与前馈网络相结合的方式,能够高效地处置处罚序列数据中的全局上下文信息,使得 RT-DETR 如许的目标检测模型可以更好地进行端到端的检测,尤其是在复杂的场景中表现尤为精彩。
nn.MultiheadAttention 是 PyTorch 中实现多头自注意力机制的模块,它是 Transformer 的核心组件。多头注意力机制答应模型在多个差别的子空间中计算注意力,从而使模型能够捕获到序列中差别层次和差别位置的信息。
多头注意力的原理
多头自注意力机制的目标是让模型能够关注输入序列中差别位置的相干性。在每个头中,输入序列通过线性投影映射到 query(查询)、key(键)和 value(值)三个向量空间,然后计算注意力得分。多个头可以并行计算,通过差别的权重来关注序列中的差别部门,最后将所有头的输出拼接起来进行进一步处置处罚。
公式上,Scaled Dot-Product Attention 计算如下:
其中:
- ( Q )(Query):查询向量
- ( K )(Key):键向量
- ( V )(Value):值向量
- ( d_k ):键向量的维度,用于缩放点积的效果,避免梯度消失
对于多头注意力机制,多个注意力头可以并行计算:
每个头的计算为:
nn.MultiheadAttention 的实现
在 PyTorch 中,nn.MultiheadAttention 封装了上述的多头自注意力机制,并支持批量处置处罚序列数据。
关键步骤:
- 输入线性变换:输入的特征会通过线性层投影,天生 query、key 和 value 三个矩阵。每个矩阵有多个头,分别用差别的权重矩阵进行线性变换。
- Scaled Dot-Product Attention:对于每个头,计算 query 和 key 的点积,应用缩放和 softmax,然后将效果与 value 相乘,得到注意力输出。
- 多头拼接:所有头的输出被拼接在一起,并通过最后的线性变换得到终极的多头注意力效果。
- 残差毗连:注意力的输出与输入序列通过残差毗连结合,保持信息的稳定性。
PyTorch 中 nn.MultiheadAttention 的核心代码布局:
- import torch
- import torch.nn.functional as F
- from torch import nn
- class MultiheadAttention(nn.Module):
- def __init__(self, embed_dim, num_heads, dropout=0.0):
- super(MultiheadAttention, self).__init__()
- self.embed_dim = embed_dim
- self.num_heads = num_heads
- self.dropout = dropout
- # 确保嵌入维度能被头的数量整除
- assert embed_dim % num_heads == 0, "Embedding dimension must be divisible by the number of heads"
- # 每个头的维度
- self.head_dim = embed_dim // num_heads
- # 定义 Q、K、V 的线性投影层
- self.q_proj = nn.Linear(embed_dim, embed_dim)
- self.k_proj = nn.Linear(embed_dim, embed_dim)
- self.v_proj = nn.Linear(embed_dim, embed_dim)
- # 最终的输出投影层
- self.out_proj = nn.Linear(embed_dim, embed_dim)
- def forward(self, query, key, value):
- # 1. 线性投影 Q、K、V
- Q = self.q_proj(query) # [batch_size, seq_len, embed_dim]
- K = self.k_proj(key) # [batch_size, seq_len, embed_dim]
- V = self.v_proj(value) # [batch_size, seq_len, embed_dim]
- # 2. 将 Q、K、V 分成多头
- Q = self._split_heads(Q) # [batch_size, num_heads, seq_len, head_dim]
- K = self._split_heads(K) # [batch_size, num_heads, seq_len, head_dim]
- V = self._split_heads(V) # [batch_size, num_heads, seq_len, head_dim]
- # 3. 计算每个头的自注意力
- attn_output = self._scaled_dot_product_attention(Q, K, V)
- # 4. 将多头的输出拼接起来
- attn_output = self._combine_heads(attn_output)
- # 5. 最终的线性投影
- output = self.out_proj(attn_output) # [batch_size, seq_len, embed_dim]
- return output
- def _split_heads(self, x):
- # 将输入按照头的数量进行分割,batch_size 和 seq_len 保持不变,embed_dim 分成 num_heads * head_dim
- batch_size, seq_len, embed_dim = x.size()
- x = x.view(batch_size, seq_len, self.num_heads, self.head_dim)
- return x.permute(0, 2, 1, 3) # [batch_size, num_heads, seq_len, head_dim]
- def _combine_heads(self, x):
- # 将多头的输出重新组合成一个张量
- batch_size, num_heads, seq_len, head_dim = x.size()
- x = x.permute(0, 2, 1, 3).contiguous()
- return x.view(batch_size, seq_len, num_heads * head_dim)
- def _scaled_dot_product_attention(self, Q, K, V):
- # Q 和 K 的点积,然后缩放
- scores = torch.matmul(Q, K.transpose(-2, -1)) / self.head_dim ** 0.5 # [batch_size, num_heads, seq_len, seq_len]
- attn_weights = F.softmax(scores, dim=-1) # 注意力权重
- attn_output = torch.matmul(attn_weights, V) # 通过权重加权的 V
- return attn_output
复制代码 代码解释:
- 初始化 (__init__):
- embed_dim:输入的嵌入维度,即每个序列元素的特征长度。
- num_heads:多头注意力中的头数,embed_dim 必须能被 num_heads 整除。
- q_proj、k_proj、v_proj:分别是对 query、key 和 value 进行线性变换的投影层。
- 前向传播 (forward):
- 将输入的 query、key、value 分别通过线性层投影到 Q、K、V 向量。
- 使用 _split_heads 将它们分割成多头。
- 计算缩放的点积注意力 (_scaled_dot_product_attention)。
- 将多头的效果拼接起来 (_combine_heads)。
- 最后通过 out_proj 投影到终极的输出。
- 注意力计算 (_scaled_dot_product_attention):
- 通过矩阵乘法计算 Q 和 K 的点积,得到每个位置之间的相似度得分。
- 使用 softmax 将这些得分归一化为注意力权重。
- 用这些权重对 V 进行加权求和,得到注意力的输出。
- 多头处置处罚 (_split_heads 和 _combine_heads):
- _split_heads:将 Q、K 和 V 分解为多个头,以便并行计算每个头的自注意力。
- _combine_heads:将每个头的输出重新组合为一个完备的张量,供后续处置处罚。
总结
nn.MultiheadAttention 模块实现了多头自注意力机制,它通过并行计算多个注意力头来捕获输入序列中差别位置和差别层次的依赖关系。每个头可以学习差别的注意力模式,终极将这些模式结合起来,天生更加丰富的特征表现。这一机制在 Transformer 中的应用,使模型具备了捕获长距离依赖关系和并行处置处罚的能力,大大进步了计算服从。
结论
RT-DETR 是一种结合 Transformer 和目标检测的新型模型,具有及时检测的能力,并且在精度上比传统的目标检测模型有明显提升。通过自注意力机制和高效的特征提取设计,RT-DETR 在检测大中小目标时均有精彩的表现,同时减少了复杂的后处置处罚步骤,使其更加适用于现实应用场景,如主动驾驶、监控、呆板人视觉等。
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! 更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |