简介
相信大部分同砚们都已了解或接触过OpenAtom OpenHarmony(以下简称“OpenHarmony”)了,但你一定没在OpenHarmony上实现过人脸识别功能,跟着本文带你快速在OpenHarmony尺度装备上基于SeetaFace2和OpenCV实现人脸识别。
项目效果
本项目实现了导入人脸模子、人脸框选和人脸识别三大功能,操纵流程如下:
- 录入页面点击右下角按钮,跳转拍摄页面举行照相;
- 选择一张或多张人脸作为训练模子,并设置对应的名字;
- 选择一张未录入的人脸图片,点击框选按钮实现人脸图片框选功能;
- 最后点击识别,应用会对当前图片举行匹配,最终在界面中显示识别效果。
快速上手
装备端开发
装备端通过OpenCV对图像举行处理并通过Seetaface2对图形数据举行人脸头像的识别,最终输出对应的NAPI接口提供给应用端调用。因此装备端开发重要涉及到OpenCV和Seetaface2的移植以及NAPI接口的开发。
OpenCV库移植
OpenCV是一个功能非常强大的开源盘算机视觉库。此库已由知识体系工作组移植到了OpenHarmony中,后期还会将此库合入到主仓。在此库上主仓之前,我们只必要以下几个步调就可以实现OpenCV的移植使用。
- git clone git@gitee.com:zhong-luping/ohos_opencv.git
复制代码
- 将OpenCV拷贝到OpenHarmony目录的third_party下
- cp -raf opencv ~/openharmony/third_party/
复制代码 打开OpenCV目录下的BUILD.gn,如下:
不必要video以及flann功能,将对应的模块注释即可。
- import("//build/ohos.gni")
- group("opencv") {
- deps = [
- "//third_party/opencv/modules/core:opencv_core",
- // "//third_party/opencv/modules/flann:opencv_flann",
- "//third_party/opencv/modules/imgproc:opencv_imgproc",
- "//third_party/opencv/modules/ml:opencv_ml",
- "//third_party/opencv/modules/photo:opencv_photo",
- "//third_party/opencv/modules/dnn:opencv_dnn",
- "//third_party/opencv/modules/features2d:opencv_features2d",
- "//third_party/opencv/modules/imgcodecs:opencv_imgcodecs",
- "//third_party/opencv/modules/videoio:opencv_videoio",
- "//third_party/opencv/modules/calib3d:opencv_calib3d",
- "//third_party/opencv/modules/highgui:opencv_highgui",
- "//third_party/opencv/modules/objdetect:opencv_objdetect",
- "//third_party/opencv/modules/stitching:opencv_stitching",
- "//third_party/opencv/modules/ts:opencv_ts",
- // "//third_party/opencv/modules/video:opencv_video",
- "//third_party/opencv/modules/gapi:opencv_gapi",
- ]
- }
复制代码
- 添加依赖子系统的part_name,编译框架子系统会将编译出的库拷贝到系统文件中。
此项目中我们新建了一个SeetaFaceApp的子系统,该子系统中命名part_name为SeetafaceApi,所以我们必要在对应模块中的BUILD.gn中加上part_name=“SeetafaceApi”
以module/core为例:
- ohos_shared_library("opencv_core"){
- sources = [ ... ]
- configs = [ ... ]
- deps = [ ... ]
- part_name = "SeetafaceApi"
- }
复制代码 在生成NAPI的BUILD.gn中添加以下依赖:
- deps += [ "//third_party/opencv:opencv" ]
复制代码 至此,人脸识别中OpenCV的移植使用完成。
SeetaFace2库移植
SeetaFace2是中科视拓开源的第二代人脸识别库。包罗了搭建一套全自动人脸识别系统所需的三个核心模块,即:人脸检测模块FaceDetector、面部关键点定位模块FaceLandmarker以及人脸特性提取与比对模块 FaceRecognizer。
关于SeetaFace2的移植请参照文档:SeetaFace2移植开发文档。
NAPI接口开发
关于OpenHarmony中的NAPI开发,参考视频:
OpenHarmony中napi的开发视频教程。本文将重点讲解NAPI接口怎样实现OpenCV以及SeetaFace的调用。
int GetRecognizePoints(const char *image_path);
此接口重要是通过应用层输入一张图片,通过OpenCV的imread接口获取到图片数据,并通过人脸检测模块FaceDetector分析获得图片中全部的人脸矩形框(矩形框是以x,y,w,h的方式)并将人脸框矩形以数组的方式返回到应用层。
人脸框矩形获取的重要代码如下:
- static int RecognizePoint(string image_path, FaceRect *rect, int num)
- {
- if (rect == nullptr) {
- cerr << "NULL POINT!" << endl;
- LOGE("NULL POINT! \n");
- return -1;
- }
- seeta::ModelSetting::Device device = seeta::ModelSetting::CPU;
- int id = 0;
- /* 设置人脸识别模型。*/
- seeta::ModelSetting FD_model( "/system/usr/model/fd_2_00.dat", device, id );
- seeta::ModelSetting FL_model( "/system/usr/model/pd_2_00_pts81.dat", device, id );
- seeta::FaceDetector FD(FD_model);
- seeta::FaceLandmarker FL(FL_model);
- FD.set(seeta::FaceDetector::PROPERTY_VIDEO_STABLE, 1);
- /* 读取图片数据 */
- auto frame = imread(image_path);
- seeta::cv::ImageData simage = frame;
- if (simage.empty()) {
- cerr << "Can not open image: " << image_path << endl;
- LOGE("Can not open image: %{public}s", image_path.c_str());
- return -1;
- }
- /* 图片数据进行人脸识别处理 ,获取所有的人脸框数据对象*/
- auto faces = FD.detect(simage);
- if (faces.size <= 0) {
- cerr << "detect " << image_path << "failed!" << endl;
- LOGE("detect image: %s failed!", image_path.c_str());
- return -1;
- }
- for (int i = 0; (i < faces.size && i < num); i++) {
- /* 将所有人脸框对象数据以坐标形式输出*/
- auto &face = faces.data[i];
- memcpy(&rect[i], &(face.pos), sizeof(FaceRect));
- }
- return faces.size;
- }
复制代码 其中FD_model是人脸检测模子,而FL_model是面部关键点定位模子(此模子分为5点定位和81点定位,本项目中使用的是81点定位模子),这些模子从开源项目中免费获取。
通过以上方式获取到对应的人脸矩形框后,再将矩形框以数组的方式返回到应用端:
- string image = path;
- p = (FaceRect *)malloc(sizeof(FaceRect) * MAX_FACE_RECT);
- /* 根据图片进行人脸识别并获取人脸框坐标点 */
- int retval = RecognizePoint(image, p, MAX_FACE_RECT);
- if (retval <= napi_ok) {
- LOGE("GetNapiValueString failed!");
- free(p);
- return result;
- }
- /*将所有坐标点以数组方式返回到应用端*/
- for (int i = 0; i < retval; i++) {
- int arry_int[4] = {p[i].x, p[i].y, p[i].w, p[i].h};
- int arraySize = (sizeof(arry_int) / sizeof(arry_int[0]));
- for (int j = 0; j < arraySize; j++) {
- napi_value num_val;
- if (napi_create_int32(env, arry_int[j], &num_val) != napi_ok) {
- LOGE("napi_create_int32 failed!");
- return result;
- }
- napi_set_element(env, array, i*arraySize + j, num_val);
- }
- }
- if (napi_create_object(env, &result) != napi_ok) {
- LOGE("napi_create_object failed!");
- free(p);
- return result;
- }
- if (napi_set_named_property(env, result, "recognizeFrame", array) != napi_ok) {
- LOGE("napi_set_named_property failed!");
- free(p);
- return result;
- }
- LOGI("");
- free(p);
- return result;
复制代码 其中array是通过napi_create_array创建的一个NAPI数组对象,通过 napi_set_element将全部的矩形框数据保存到array对象中,最后通过 napi_set_named_property将array转换成应用端可识别的对象类型result并将其返回。
- 人脸搜索识别初始化与逆初始化。
- int FaceSearchInit();
- int FaceSearchDeinit();
这2个接口重要是提供给人脸搜索以及识别调用的,初始化重要包含模子的注册以及识别模块的初始化:
- static int FaceSearchInit(FaceSearchInfo *info)
- {
- if (info == NULL) {
- info = (FaceSearchInfo *)malloc(sizeof(FaceSearchInfo));
- if (info == nullptr) {
- cerr << "NULL POINT!" << endl;
- return -1;
- }
- }
- seeta::ModelSetting::Device device = seeta::ModelSetting::CPU;
- int id = 0;
- seeta::ModelSetting FD_model( "/system/usr/model/fd_2_00.dat", device, id );
- seeta::ModelSetting PD_model( "/system/usr//model/pd_2_00_pts5.dat", device, id );
- seeta::ModelSetting FR_model( "/system/usr/model/fr_2_10.dat", device, id );
- info->engine = make_shared<seeta::FaceEngine>(FD_model, PD_model, FR_model, 2, 16);
- info->engine->FD.set( seeta::FaceDetector::PROPERTY_MIN_FACE_SIZE, 80);
- info->GalleryIndexMap.clear();
- return 0;
- }
复制代码 而逆初始化就是做一些内存的开释。
- static void FaceSearchDeinit(FaceSearchInfo *info, int need_delete)
- {
- if (info != nullptr) {
- if (info->engine != nullptr) {
- }
- info->GalleryIndexMap.clear();
- if (need_delete) {
- free(info);
- info = nullptr;
- }
- }
- }
复制代码 int FaceSearchRegister(const char *value);
必要留意的是,该接口必要应用端传入一个json数据的参数,重要包含注册人脸的名字,图片以及图片个数,如{“name”:“刘德华”,“sum”:“2”,“image”:{“11.jpg”,“12.jpg”}}。而剖析参数的时候必要调用 napi_get_named_property对json数据的各个对象举行剖析,具体代码如下:
- napi_get_cb_info(env, info, &argc, &argv, &thisVar, &data);
- napi_value object = argv;
- napi_value value = nullptr;
- if (napi_get_named_property(env, object, (const char *)"name", &value) == napi_ok) {
- char name[64] = {0};
- if (GetNapiValueString(env, value, (char *)name, sizeof(name)) < 0) {
- LOGE("GetNapiValueString failed!");
- return result;
- }
- reg_info.name = name;
- }
- LOGI("name = %{public}s", reg_info.name.c_str());
- if (napi_get_named_property(env, object, (const char *)"sum", &value) == napi_ok) {
-
- if (napi_get_value_uint32(env, value, &sum) != napi_ok) {
- LOGE("napi_get_value_uint32 failed!");
- return result;
- }
- }
- LOGI("sum = %{public}d", sum);
- if (napi_get_named_property(env, object, (const char *)"image", &value) == napi_ok) {
- bool res = false;
- if (napi_is_array(env, value, &res) != napi_ok || res == false) {
- LOGE("napi_is_array failed!");
- return result;
- }
- for (int i = 0; i < sum; i++) {
- char image[256] = {0};
- napi_value imgPath = nullptr;
- if (napi_get_element(env, value, i, &imgPath) != napi_ok) {
- LOGE("napi_get_element failed!");
- return result;
- }
- if (GetNapiValueString(env, imgPath, (char *)image, sizeof(image)) < 0) {
- LOGE("GetNapiValueString failed!");
- return result;
- }
- reg_info.path = image;
- if (FaceSearchRegister(g_FaceSearch, reg_info) != napi_ok) {
- retval = -1;
- break;
- }
- }
- }
复制代码 通过napi_get_cb_info获取从应用端传来的参数,并通过 napi_get_named_property获取对应的name以及图片个数,最后通过napi_get_element获取图片数组中的各个image,将name和image通过FaceSearchRegister接口将图片和名字注册到SeetaFace2模块的识别引擎中。具体实现如下:
- static int FaceSearchRegister(FaceSearchInfo &info, RegisterInfo &gegister)
- {
- if (info.engine == nullptr) {
- cerr << "NULL POINT!" << endl;
- return -1;
- }
- seeta::cv::ImageData image = cv::imread(gegister.path);
- auto id = info.engine->Register(image);
- if (id >= 0) {
- info.GalleryIndexMap.insert(make_pair(id, gegister.name));
- }
- return 0;
- }
复制代码 注册完数据后,后续可以通过该引擎来识别对应的图片。
- char *FaceSearchGetRecognize(const char *image_path);
复制代码 该接口实现了通过传入一张图片,在识别引擎中举行搜索识别。如果识别引擎中有类似的人脸注册,则返回对应人脸注册时的名字,否则返回不识别(ignored)字样。该方法是通过异步回调的方式实现的:
- // 创建async work,创建成功后通过最后一个参数(commandStrData->asyncWork)返回async work的handle
- napi_value resourceName = nullptr;
- napi_create_string_utf8(env, "FaceSearchGetPersonRecognizeMethod", NAPI_AUTO_LENGTH, &resourceName);
- napi_create_async_work(env, nullptr, resourceName, FaceSearchRecognizeExecuteCB, FaceSearchRecognizeCompleteCB,
- (void *)commandStrData, &commandStrData->asyncWork);
- // 将刚创建的async work加到队列,由底层去调度执行
- napi_queue_async_work(env, commandStrData->asyncWork);
复制代码 其中FaceSearchRecognizeExecuteCB实现了人脸识别
- static void FaceSearchRecognizeExecuteCB(napi_env env, void *data)
- {
- CommandStrData *commandStrData = dynamic_cast<CommandStrData*>((CommandStrData *)data);
- if (commandStrData == nullptr) {
- HILOG_ERROR("nullptr point!", __FUNCTION__, __LINE__);
- return;
- }
- FaceSearchInfo faceSearch = *(commandStrData->mFaceSearch);
- commandStrData->result = FaceSearchSearchRecognizer(faceSearch, commandStrData->filename);
- LOGI("Recognize result : %s !", __FUNCTION__, __LINE__, commandStrData->result.c_str());
- }
复制代码 FaceSearchRecognizeCompleteCB函数通过napi_resolve_deferred接口将识别效果返回到应用端。
- static void FaceSearchRecognizeCompleteCB(napi_env env, napi_status status, void *data)
- {
- CommandStrData *commandStrData = dynamic_cast<CommandStrData*>((CommandStrData *)data);
- napi_value result;
- if (commandStrData == nullptr || commandStrData->deferred == nullptr) {
- LOGE("nullptr", __FUNCTION__, __LINE__);
- if (commandStrData != nullptr) {
- napi_delete_async_work(env, commandStrData->asyncWork);
- delete commandStrData;
- }
- return;
- }
- const char *result_str = (const char *)commandStrData->result.c_str();
- if (napi_create_string_utf8(env, result_str, strlen(result_str), &result) != napi_ok) {
- LOGE("napi_create_string_utf8 failed!", __FUNCTION__, __LINE__);
- napi_delete_async_work(env, commandStrData->asyncWork);
- delete commandStrData;
- return;
- }
- napi_resolve_deferred(env, commandStrData->deferred, result);
- napi_delete_async_work(env, commandStrData->asyncWork);
- delete commandStrData;
- }
复制代码 通过人脸特性提取与比对模块,对传入的数据与已注册的数据举行对比,并通过返回对比的相似度来举行判断当前人脸是否为可识别的,最后返回识别效果。具体实今世码:
- static string FaceSearchSearchRecognizer(FaceSearchInfo &info, string filename)
- {
- if (info.engine == nullptr) {
- cerr << "NULL POINT!" << endl;
- return "recognize error 0";
- }
- string name;
- float threshold = 0.7f;
- seeta::QualityAssessor QA;
- auto frame = cv::imread(filename);
- if (frame.empty()) {
- LOGE("read image %{public}s failed!", filename.c_str());
- return "recognize error 1!";
- }
- seeta::cv::ImageData image = frame;
- std::vector<SeetaFaceInfo> faces = info.engine->DetectFaces(image);
- for (SeetaFaceInfo &face : faces) {
- int64_t index = 0;
- float similarity = 0;
- auto points = info.engine->DetectPoints(image, face);
- auto score = QA.evaluate(image, face.pos, points.data());
- if (score == 0) {
- name = "ignored";
- } else {
- auto queried = info.engine->QueryTop(image, points.data(), 1, &index, &similarity);
- // no face queried from database
- if (queried < 1) continue;
- // similarity greater than threshold, means recognized
- if( similarity > threshold ) {
- name = info.GalleryIndexMap[index];
- }
- }
- }
- LOGI("name : %{public}s \n", name.length() > 0 ? name.c_str() : "null");
- return name.length() > 0 ? name : "recognize failed";
- }
复制代码 至此,全部的NAPI接口已经开发完成。
- NAPI库编译开发完NAPI接口后,我们必要将我们编写的库加入到系统中举行编译,我们必要添加一个自己的子系统。
首先在库目录下新建一个ohos.build
- {
- "subsystem": "SeetafaceApp",
- "parts": {
- "SeetafaceApi": {
- "module_list": [
- "//seetaface:seetafaceapp_napi"
- ],
- "test_list": [ ]
- }
- }
- }
复制代码 其次同一目录新建一个BUILD.gn,将库源文件以及对应的依赖加上,如下:
- import("//build/ohos.gni")config("lib_config") { cflags_cc = [ "-frtti", "-fexceptions", "-DCVAPI_EXPORTS", "-DOPENCV_ALLOCATOR_STATS_COUNTER_TYPE=int", "-D_USE_MATH_DEFINES", "-D__OPENCV_BUILD=1", "-D__STDC_CONSTANT_MACROS", "-D__STDC_FORMAT_MACROS", "-D__STDC_LIMIT_MACROS", "-O2", "-Wno-error=header-hygiene", ]}ohos_shared_library("seetafaceapp_napi") { sources = [ "app.cpp", ] include_dirs = [ "./", "//third_party/opencv/include", "//third_party/opencv/common", "//third_party/opencv/modules/core/include", "//third_party/opencv/modules/highgui/include", "//third_party/opencv/modules/imgcodecs/include", "//third_party/opencv/modules/imgproc/include", "//third_party/opencv/modules/calib3d/include", "//third_party/opencv/modules/dnn/include", "//third_party/opencv/modules/features2d/include", "//third_party/opencv/modules/flann/include", "//third_party/opencv/modules/ts/include", "//third_party/opencv/modules/video/include", "//third_party/opencv/modules/videoio/include", "//third_party/opencv/modules/ml/include", "//third_party/opencv/modules/objdetect/include", "//third_party/opencv/modules/photo/include", "//third_party/opencv/modules/stitching/include", "//third_party/SeetaFace2/FaceDetector/include", "//third_party/SeetaFace2/FaceLandmarker/include", "//third_party/SeetaFace2/FaceRecognizer/include", "//third_party/SeetaFace2/QualityAssessor/include", "//base/accessibility/common/log/include", "//base/hiviewdfx/hilog_lite/interfaces/native/innerkits" ] deps = [ "//foundation/ace/napi:ace_napi" ] deps += [ "//third_party/opencv:opencv" ]
- deps += [ "//third_party/SeetaFace2:SeetaFace2" ] external_deps = [ "hiviewdfx_hilog_native:libhilog", ] configs = [ ":lib_config" ] # 指定库生成的路径 relative_install_dir = "module" # 子系统及其组件,后面会引用 subsystem_name = "SeetafaceApp" part_name = "SeetafaceApi"}
复制代码 添加完对应的文件后,我们必要将我们的子系统添加到系统中举行编译,打开build/subsystem_config.json并在最后添加以下代码:
- "SeetafaceApp": {
- "path": "seetaface",
- "name": "SeetafaceApp"
- }
复制代码 添加完子系统再修改产对应的品配置
打开productdefine/common/products/rk3568.json并在最后添加以下代码:
- "SeetafaceApp:SeetafaceApi":{}
复制代码 做完以上修改后我们就可以通过以下命令直接编译NAPI的库文件了:
- ./build.sh --product-name rk3568 --ccache
复制代码 参考RK3568快速上手-镜像烧录完成烧录即可。
应用端开发
在完成装备NAPI功能开发后,应用端通过调用NAPI组件中暴露给应用的人脸识别接口,即可实现对应功能。接下来就带着大家使用NAPI实现人脸识别功能。
开发准备
- 下载DevEco Studio 3.0 Beta4;
- 搭建开发情况,参考开发准备;
- 了解属性eTS开发,参考eTS语言快速入门;
SeetaFace2初始化
- 首先将SeetaFace2 NAPI接口声明文件放置于SDK目录/api下;
- 然后导入SeetaFace2 NAPI模块;ck-start/star
- 调用初始化接口;
- // 首页实例创建后
- async aboutToAppear() {
- await StorageUtils.clearModel();
- CommonLog.info(TAG,'aboutToAppear')
- // 初始化人脸识别
- let res = SeetafaceApp.FaceSearchInit()
- CommonLog.info(TAG,`FaceSearchInit res=${res}`)
- this.requestPermissions()
- }
- // 请求权限
- requestPermissions(){
- CommonLog.info(TAG,'requestPermissions')
- let context = featureAbility.getContext()
- context.requestPermissionsFromUser(PERMISSIONS, 666,(res)=>{
- this.getMediaImage()
- })
- }
复制代码 获取全部人脸图片
通过文件管理模块fileio和媒体库管理mediaLibrary,获取指定应用数据目录下全部的图片信息,并将路径赋值给faceList,faceList数据用于Image组件提供url举行加载图片
- // 获取所有图片
- async getMediaImage(){
- let context = featureAbility.getContext();
- // 获取本地应用沙箱路径
- let localPath = await context.getOrCreateLocalDir()
- CommonLog.info(TAG, `localPath:${localPath}`)
- let facePath = localPath + "/files"
- // 获取所有照片
- this.faceList = await FileUtil.getImagePath(facePath)
- }
复制代码 设置人脸模子
获取选中的人脸图片地点和输入的名字,调用SeetafaceApp.FaceSearchRegister(params)举行设置人脸模子。其中参数params由name名字、image图片地点集合和sum图片数量组成。
- async submit(name) {
- if (!name || name.length == 0) {
- CommonLog.info(TAG, 'name is empty')
- return
- }
- let selectArr = this.faceList.filter(item => item.isSelect)
- if (selectArr.length == 0) {
- CommonLog.info(TAG, 'faceList is empty')
- return
- }
- // 关闭弹窗
- this.dialogController.close()
- try {
- let urls = []
- let files = []
- selectArr.forEach(item => {
- let source = item.url.replace('file://', '')
- CommonLog.info(TAG, `source:${source}`)
- urls.push(item.url)
- files.push(source)
- })
- // 设置人脸识别模型参数
- let params = {
- name: name,
- image: files,
- sum: files.length
- }
- CommonLog.info(TAG, 'FaceSearchRegister' + JSON.stringify(params))
- let res = SeetafaceApp.FaceSearchRegister(params)
- CommonLog.info(TAG, 'FaceSearchRegister res ' + res)
- // 保存已设置的人脸模型到轻量存储
- let data = {
- name:name,
- urls:urls
- }
- let modelStr = await StorageUtils.getModel()
- let modelList = JSON.parse(modelStr)
- modelList.push(data)
- StorageUtils.setModel(modelList)
- router.back()
- } catch (err) {
- CommonLog.error(TAG, 'submit fail ' + err)
- }
- }
复制代码 实现框选人脸
调用SeetafaceApp.GetRecognizePoints传入当前图片地点,获取到人脸左上和右下坐标,再通过CanvasRenderingContext2D对象绘画出人脸框。
实现人脸识别
调用SeetafaceApp.FaceSearchGetRecognize(url),传入图片地点对人脸举行识别并返回对应识别出来的名字。
- // 人脸识别
- recognize(){
- SeetafaceApp.FaceSearchGetRecognize(this.url).then(res=>{
- CommonLog.info(TAG,'recognize suceess' + JSON.stringify(res))
- if(res && res != 'ignored' && res != "recognize failed" && res != 'recognize error 1!'){
- // 赋值识别到的人物模型
- this.name = res
- }else{
- this.name = '未识别到该模型'
- }
- }).catch(err=>{
- CommonLog.error(TAG,'recognize' + err)
- this.name = '未识别到该模型'
- })
- }
复制代码
最后呢,很多开发朋侪不知道必要学习那些鸿蒙技能?鸿蒙开发岗位必要掌握那些核心技能点?为此鸿蒙的开发学习必须要系统性的举行。
而网上有关鸿蒙的开发资料非常的少,假如你想学好鸿蒙的应用开发与系统底层开发。你可以参考这份资料,少走很多弯路,节省没必要的麻烦。由两位前阿里高级研发工程师团结打造的《鸿蒙NEXT星河版OpenHarmony开发文档》里面内容包含了(ArkTS、ArkUI开发组件、Stage模子、多端部署、分布式应用开发、音频、视频、WebGL、OpenHarmony多媒体技能、Napi组件、OpenHarmony内核、Harmony南向开发、鸿蒙项目实战等等)鸿蒙(Harmony NEXT)技能知识点
如果你是一名Android、Java、前端等等开发人员,想要转入鸿蒙方向发展。可以直接领取这份资料辅助你的学习。下面是鸿蒙开发的学习路线图。
高清完备版请点击→《鸿蒙NEXT星河版开发学习文档》
针对鸿蒙发展路线打造的鸿蒙学习文档。话不多说,我们直接看详细资料鸿蒙(OpenHarmony )学习手册(共计1236页)与鸿蒙(OpenHarmony )开发入门讲授视频,帮助大家在技能的门路上更进一步。
《鸿蒙 (OpenHarmony)开发学习视频》
《鸿蒙生态应用开发V2.0白皮书》
《鸿蒙 (OpenHarmony)开发基础到实战手册》
《鸿蒙开发基础》
《鸿蒙开发进阶》
《鸿蒙开发实战》
获取这份鸿蒙星河版学习资料,请点击→《鸿蒙NEXT星河版开发学习文档》
总结
鸿蒙—作为国家主力推送的国产操纵系统。部分的高校已经取消了安卓课程,从而开设鸿蒙课程;企业纷纷跟进启动了鸿蒙研发。
并且鸿蒙是完全具备无与伦比的机会和潜力的;预计到年底将有 5,000 款的应用完成原生鸿蒙开发,未来将会支持 50 万款的应用。那么这么多的应用必要开发,也就意味着必要有更多的鸿蒙人才。鸿蒙开发工程师也将会迎来发作式的增长,学习鸿蒙势在必行!
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |