MultilingualSD3-adapter 是为 SD3 量身定制的多语言适配器。 它源自 ECCV 2024 的一篇题为 PEA-Diffusion 的论文。ChineseFLUX.1-adapter是为Flux.1系列机型量身定制的多语言适配器,理论上继续了ByT5,可支持100多种语言,但在中文方面做了额外优化。 它源于一篇题为 PEA-Diffusion 的 ECCV 2024 论文。
PEA-Diffusion
作者首先提到了一种名为 “知识蒸馏”(Knowledge Distillation,KD)的方法。KD 是一个过程,在这个过程中,一个较小的机器学习模型(称为学生)会学习模仿一个较大、较复杂的模型(称为西席)。在这种情况下,目的是让学生模型尽可能接近西席的输出或预测。这被称为 “逼迫学生分布与西席分布相匹配”。
然而,作者还盼望确保西席模型和学生模型不仅能产生相似的输出效果,而且能以相似的方式处理信息。这就是特征对齐的作用所在。他们盼望西席模型和学生模型的中间计算或特征图也能相似。因此,他们引入了一种技术,在这些模型的中间层增强这种特征对齐。如许做的目的是减少所谓的分布偏移,使学生模型更像西席模型。
现在,当模型之间存在维度差异时,OPPOer/ChineseFLUX.1-adapter 就会发挥作用。在这种情况下,他们使用的是名为 CLIP(对比语言图像预练习)的模型,一个用于英语数据,一个用于非英语数据。适配器是添加到模型中的一个小型附加组件,用于对齐或转换特征(中间计算)以匹配维度。该适配器颠末练习,可以学习特定语言的信息,而且设计高效,只有 600 万个参数。
因此,总的来说,OPPOer/ChineseFLUX.1-adapter 是一种用于调整不同模型(在本例中为英语和非英语 CLIP 模型)中特征维度的技术,以促进知识提炼并进步学生模型的性能。它是这个复杂系统中一个小而紧张的组成部分!
论文:PEA-Diffusion: Parameter-Efficient Adapter with Knowledge Distillation in non-English Text-to-Image Generation
Code: https://github.com/OPPO-Mente-Lab/PEA-Diffusion
MultilingualSD3-adapter
我们使用了多语言编码器 umt5-xxl、Mul-OpenCLIP 和 HunyuanDiT_CLIP。 我们在蒸馏练习中接纳了反向去噪处理。
- import os
- import torch
- import torch.nn as nn
- from typing import Any, Callable, Dict, List, Optional, Union
- import inspect
- from diffusers.models.transformers import SD3Transformer2DModel
- from diffusers.image_processor import VaeImageProcessor
- from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
- from diffusers import AutoencoderKL
- from tqdm import tqdm
- from PIL import Image
- from transformers import T5Tokenizer,T5EncoderModel,BertModel, BertTokenizer
- import open_clip
- class MLP(nn.Module):
- def __init__(self, in_dim=1024, out_dim=2048, hidden_dim=2048, out_dim1=4096, use_residual=True):
- super().__init__()
- if use_residual:
- assert in_dim == out_dim
- self.layernorm = nn.LayerNorm(in_dim)
- self.projector = nn.Sequential(
- nn.Linear(in_dim, hidden_dim, bias=False),
- nn.GELU(),
- nn.Linear(hidden_dim, hidden_dim, bias=False),
- nn.GELU(),
- nn.Linear(hidden_dim, hidden_dim, bias=False),
- nn.GELU(),
- nn.Linear(hidden_dim, out_dim, bias=False),
- )
- self.fc = nn.Linear(out_dim, out_dim1)
- self.use_residual = use_residual
- def forward(self, x):
- residual = x
- x = self.layernorm(x)
- x = self.projector(x)
- x2 = nn.GELU()(x)
- x2 = self.fc(x2)
- return x2
- class Transformer(nn.Module):
- def __init__(self, d_model, n_heads, out_dim1, out_dim2,num_layers=1) -> None:
- super().__init__()
- self.encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=n_heads, dim_feedforward=2048, batch_first=True)
- self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers)
- self.linear1 = nn.Linear(d_model, out_dim1)
- self.linear2 = nn.Linear(d_model, out_dim2)
-
- def forward(self, x):
- x = self.transformer_encoder(x)
- x1 = self.linear1(x)
- x1 = torch.mean(x1,1)
- x2 = self.linear2(x)
- return x1,x2
- def image_grid(imgs, rows, cols):
- assert len(imgs) == rows*cols
- w, h = imgs[0].size
- grid = Image.new('RGB', size=(cols*w, rows*h))
- grid_w, grid_h = grid.size
- for i, img in enumerate(imgs):
- grid.paste(img, box=(i%cols*w, i//cols*h))
- return grid
- def retrieve_timesteps(
- scheduler,
- num_inference_steps: Optional[int] = None,
- device: Optional[Union[str, torch.device]] = None,
- timesteps: Optional[List[int]] = None,
- sigmas: Optional[List[float]] = None,
- **kwargs,
- ):
- if timesteps is not None and sigmas is not None:
- raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
- if timesteps is not None:
- accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
- if not accepts_timesteps:
- raise ValueError(
- f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
- f" timestep schedules. Please check whether you are using the correct scheduler."
- )
- scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
- timesteps = scheduler.timesteps
- num_inference_steps = len(timesteps)
- elif sigmas is not None:
- accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
- if not accept_sigmas:
- raise ValueError(
- f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
- f" sigmas schedules. Please check whether you are using the correct scheduler."
- )
- scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
- timesteps = scheduler.timesteps
- num_inference_steps = len(timesteps)
- else:
- scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
- timesteps = scheduler.timesteps
- return timesteps, num_inference_steps
- class StableDiffusionTest():
- def __init__(self,model_path,text_encoder_path,text_encoder_path1,text_encoder_path2,proj_path,proj_t5_path):
- super().__init__()
- self.transformer = SD3Transformer2DModel.from_pretrained(model_path, subfolder="transformer",torch_dtype=dtype).to(device)
- self.vae = AutoencoderKL.from_pretrained(model_path, subfolder="vae").to(device,dtype=dtype)
- self.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_path, subfolder="scheduler")
- self.vae_scale_factor = (
- 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
- )
- self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
- self.default_sample_size = (
- self.transformer.config.sample_size
- if hasattr(self, "transformer") and self.transformer is not None
- else 128
- )
- self.text_encoder_t5 = T5EncoderModel.from_pretrained(text_encoder_path).to(device,dtype=dtype)
- self.tokenizer_t5 = T5Tokenizer.from_pretrained(text_encoder_path)
- self.text_encoder = BertModel.from_pretrained(f"{text_encoder_path1}/clip_text_encoder", False, revision=None).to(device,dtype=dtype)
- self.tokenizer = BertTokenizer.from_pretrained(f"{text_encoder_path1}/tokenizer")
- self.text_encoder2, _, _ = open_clip.create_model_and_transforms('xlm-roberta-large-ViT-H-14', pretrained=text_encoder_path2)
- self.tokenizer2 = open_clip.get_tokenizer('xlm-roberta-large-ViT-H-14')
- self.text_encoder2.text.output_tokens = True
- self.text_encoder2 = self.text_encoder2.to(device,dtype=dtype)
- self.proj = MLP(2048, 2048, 2048, 4096, use_residual=False).to(device,dtype=dtype)
- self.proj.load_state_dict(torch.load(proj_path, map_location="cpu"))
- self.proj_t5 = Transformer(d_model=4096, n_heads=8, out_dim1=2048, out_dim2=4096).to(device,dtype=dtype)
- self.proj_t5.load_state_dict(torch.load(proj_t5_path, map_location="cpu"))
- def encode_prompt(self, prompt, device, do_classifier_free_guidance=True, negative_prompt=None):
- batch_size = len(prompt) if isinstance(prompt, list) else 1
- text_input_ids_t5 = self.tokenizer_t5(
- prompt,
- padding="max_length",
- max_length=77,
- truncation=True,
- add_special_tokens=False,
- return_tensors="pt",
- ).input_ids.to(device)
- text_embeddings = self.text_encoder_t5(text_input_ids_t5)
- text_inputs = self.tokenizer(
- prompt,
- padding="max_length",
- max_length=77,
- truncation=True,
- return_tensors="pt",
- )
- input_ids = text_inputs.input_ids.to(device)
- attention_mask = text_inputs.attention_mask.to(device)
- encoder_hidden_states = self.text_encoder(input_ids,attention_mask=attention_mask)[0]
- text_input_ids = self.tokenizer2(prompt).to(device)
- _,encoder_hidden_states2 = self.text_encoder2.encode_text(text_input_ids)
- encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states2], dim=-1)
- encoder_hidden_states_t5 = text_embeddings[0]
- encoder_hidden_states = self.proj(encoder_hidden_states)
- add_text_embeds,encoder_hidden_states_t5 = self.proj_t5(encoder_hidden_states_t5.half())
- prompt_embeds = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=-2)
- # get unconditional embeddings for classifier free guidance
- if do_classifier_free_guidance:
- if negative_prompt is None:
- uncond_tokens = [""] * batch_size
- else:
- uncond_tokens = negative_prompt
- text_input_ids_t5 = self.tokenizer_t5(
- uncond_tokens,
- padding="max_length",
- max_length=77,
- truncation=True,
- add_special_tokens=False,
- return_tensors="pt",
- ).input_ids.to(device)
- text_embeddings = self.text_encoder_t5(text_input_ids_t5)
- text_inputs = self.tokenizer(
- uncond_tokens,
- padding="max_length",
- max_length=77,
- truncation=True,
- return_tensors="pt",
- )
- input_ids = text_inputs.input_ids.to(device)
- attention_mask = text_inputs.attention_mask.to(device)
- encoder_hidden_states = self.text_encoder(input_ids,attention_mask=attention_mask)[0]
- text_input_ids = self.tokenizer2(uncond_tokens).to(device)
- _,encoder_hidden_states2 = self.text_encoder2.encode_text(text_input_ids)
- encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states2], dim=-1)
- encoder_hidden_states_t5 = text_embeddings[0]
- encoder_hidden_states_uncond = self.proj(encoder_hidden_states)
-
- add_text_embeds_uncond,encoder_hidden_states_t5_uncond = self.proj_t5(encoder_hidden_states_t5.half())
- prompt_embeds_uncond = torch.cat([encoder_hidden_states_uncond, encoder_hidden_states_t5_uncond], dim=-2)
- prompt_embeds = torch.cat([prompt_embeds_uncond, prompt_embeds], dim=0)
- pooled_prompt_embeds = torch.cat([add_text_embeds_uncond, add_text_embeds], dim=0)
- return prompt_embeds,pooled_prompt_embeds
- def prepare_latents(
- self,
- batch_size,
- num_channels_latents,
- height,
- width,
- dtype,
- device,
- generator,
- latents=None,
- ):
- if latents is not None:
- return latents.to(device=device, dtype=dtype)
- shape = (
- batch_size,
- num_channels_latents,
- int(height) // self.vae_scale_factor,
- int(width) // self.vae_scale_factor,
- )
- if isinstance(generator, list) and len(generator) != batch_size:
- raise ValueError(
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
- )
- latents = torch.randn(shape, generator=generator, dtype=dtype).to(device)
- return latents
- @property
- def guidance_scale(self):
- return self._guidance_scale
- @property
- def clip_skip(self):
- return self._clip_skip
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
- # corresponds to doing no classifier free guidance.
- @property
- def do_classifier_free_guidance(self):
- return self._guidance_scale > 1
- @property
- def joint_attention_kwargs(self):
- return self._joint_attention_kwargs
- @property
- def num_timesteps(self):
- return self._num_timesteps
- @property
- def interrupt(self):
- return self._interrupt
- @torch.no_grad()
- def __call__(
- self,
- prompt: Union[str, List[str]] = None,
- prompt_2: Optional[Union[str, List[str]]] = None,
- prompt_3: Optional[Union[str, List[str]]] = None,
- height: Optional[int] = None,
- width: Optional[int] = None,
- num_inference_steps: int = 28,
- timesteps: List[int] = None,
- guidance_scale: float = 7.0,
- negative_prompt: Optional[Union[str, List[str]]] = None,
- negative_prompt_2: Optional[Union[str, List[str]]] = None,
- negative_prompt_3: Optional[Union[str, List[str]]] = None,
- num_images_per_prompt: Optional[int] = 1,
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
- latents: Optional[torch.FloatTensor] = None,
- prompt_embeds: Optional[torch.FloatTensor] = None,
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
- negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
- output_type: Optional[str] = "pil",
- return_dict: bool = True,
- joint_attention_kwargs: Optional[Dict[str, Any]] = None,
- clip_skip: Optional[int] = None,
- callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
- callback_on_step_end_tensor_inputs: List[str] = ["latents"],
- ):
- height = height or self.default_sample_size * self.vae_scale_factor
- width = width or self.default_sample_size * self.vae_scale_factor
- self._guidance_scale = guidance_scale
- self._clip_skip = clip_skip
- self._joint_attention_kwargs = joint_attention_kwargs
- self._interrupt = False
- if prompt is not None and isinstance(prompt, str):
- batch_size = 1
- elif prompt is not None and isinstance(prompt, list):
- batch_size = len(prompt)
- else:
- batch_size = prompt_embeds.shape[0]
- prompt_embeds,pooled_prompt_embeds = self.encode_prompt(prompt, device)
- timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
- num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
- self._num_timesteps = len(timesteps)
- num_channels_latents = self.transformer.config.in_channels
- latents = self.prepare_latents(
- batch_size * num_images_per_prompt,
- num_channels_latents,
- height,
- width,
- prompt_embeds.dtype,
- device,
- generator,
- latents,
- )
- for i, t in tqdm(enumerate(timesteps)):
- if self.interrupt:
- continue
- latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
- timestep = t.expand(latent_model_input.shape[0]).to(dtype=dtype)
- noise_pred = self.transformer(
- hidden_states=latent_model_input,
- timestep=timestep,
- encoder_hidden_states=prompt_embeds.to(dtype=self.transformer.dtype),
- pooled_projections=pooled_prompt_embeds.to(dtype=self.transformer.dtype),
- joint_attention_kwargs=self.joint_attention_kwargs,
- return_dict=False,
- )[0]
- if self.do_classifier_free_guidance:
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
- noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
- latents_dtype = latents.dtype
- latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
- if latents.dtype != latents_dtype:
- if torch.backends.mps.is_available():
- latents = latents.to(latents_dtype)
- if callback_on_step_end is not None:
- callback_kwargs = {}
- for k in callback_on_step_end_tensor_inputs:
- callback_kwargs[k] = locals()[k]
- callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
- latents = callback_outputs.pop("latents", latents)
- prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
- negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
- negative_pooled_prompt_embeds = callback_outputs.pop(
- "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
- )
- if output_type == "latent":
- image = latents
- else:
- latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
- image = self.vae.decode(latents, return_dict=False)[0]
- image = self.image_processor.postprocess(image, output_type=output_type)
- return image
- if __name__ == '__main__':
- device = "cuda"
- dtype = torch.float16
- text_encoder_path = 'google/umt5-xxl'
- text_encoder_path1 = "Tencent-Hunyuan/HunyuanDiT/t2i"
- text_encoder_path2 = 'laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k/open_clip_pytorch_model.bin'
- model_path = "stabilityai/stable-diffusion-3-medium-diffusers"
- proj_path = "OPPOer/MultilingualSD3-adapter/pytorch_model.bin"
- proj_t5_path = "OPPOer/MultilingualSD3-adapter/pytorch_model_t5.bin"
- sdt = StableDiffusionTest(model_path,text_encoder_path,text_encoder_path1,text_encoder_path2,proj_path,proj_t5_path)
- batch=2
- height = 1024
- width = 1024
- while True:
- raw_text = input("\nPlease Input Query (stop to exit) >>> ")
- if not raw_text:
- print('Query should not be empty!')
- continue
- if raw_text == "stop":
- break
- images = sdt([raw_text]*batch,height=height,width=width)
- grid = image_grid(images, rows=1, cols=batch)
- grid.save("MultilingualSD3.png")
复制代码 ChineseFLUX.1-adapter
使用了多语言编码器 byt5-xxl,在顺应过程中使用的西席模型是 FLUX.1-schnell。 我们接纳了反向去噪过程进行蒸馏练习。 理论上,该适配器可应用于任何 FLUX.1 系列模型。 我们在此提供以下应用示例。
- from diffusers import FluxPipeline, AutoencoderKL
- from diffusers.image_processor import VaeImageProcessor
- from transformers import T5ForConditionalGeneration,AutoTokenizer
- import torch
- import torch.nn as nn
- class MLP(nn.Module):
- def __init__(self, in_dim=4096, out_dim=4096, hidden_dim=4096, out_dim1=768, use_residual=True):
- super().__init__()
- self.layernorm = nn.LayerNorm(in_dim)
- self.projector = nn.Sequential(
- nn.Linear(in_dim, hidden_dim, bias=False),
- nn.GELU(),
- nn.Linear(hidden_dim, hidden_dim, bias=False),
- nn.GELU(),
- nn.Linear(hidden_dim, out_dim, bias=False),
- )
- self.fc = nn.Linear(out_dim, out_dim1)
- def forward(self, x):
- x = self.layernorm(x)
- x = self.projector(x)
- x2 = nn.GELU()(x)
- x1 = self.fc(x2)
- x1 = torch.mean(x1,1)
- return x1,x2
- dtype = torch.bfloat16
- device = "cuda"
- ckpt_id = "black-forest-labs/FLUX.1-schnell"
- text_encoder_ckpt_id = 'google/byt5-xxl'
- proj_t5 = MLP(in_dim=4672, out_dim=4096, hidden_dim=4096, out_dim1=768).to(device=device,dtype=dtype)
- text_encoder_t5 = T5ForConditionalGeneration.from_pretrained(text_encoder_ckpt_id).get_encoder().to(device=device,dtype=dtype)
- tokenizer_t5 = AutoTokenizer.from_pretrained(text_encoder_ckpt_id)
- proj_t5_save_path = f"diffusion_pytorch_model.bin"
- state_dict = torch.load(proj_t5_save_path, map_location="cpu")
- state_dict_new = {}
- for k,v in state_dict.items():
- k_new = k.replace("module.","")
- state_dict_new[k_new] = v
- proj_t5.load_state_dict(state_dict_new)
- pipeline = FluxPipeline.from_pretrained(
- ckpt_id, text_encoder=None, text_encoder_2=None,
- tokenizer=None, tokenizer_2=None, vae=None,
- torch_dtype=torch.bfloat16
- ).to(device)
- vae = AutoencoderKL.from_pretrained(
- ckpt_id,
- subfolder="vae",
- torch_dtype=torch.bfloat16
- ).to(device)
- vae_scale_factor = 2 ** (len(vae.config.block_out_channels))
- image_processor = VaeImageProcessor(vae_scale_factor=vae_scale_factor)
- while True:
- raw_text = input("\nPlease Input Query (stop to exit) >>> ")
- if not raw_text:
- print('Query should not be empty!')
- continue
- if raw_text == "stop":
- break
- with torch.no_grad():
- text_inputs = tokenizer_t5(
- raw_text,
- padding="max_length",
- max_length=256,
- truncation=True,
- add_special_tokens=True,
- return_tensors="pt",
- ).input_ids.to(device)
- text_embeddings = text_encoder_t5(text_inputs)[0]
- pooled_prompt_embeds,prompt_embeds = proj_t5(text_embeddings)
- height, width = 1024, 1024
- latents = pipeline(
- prompt_embeds=prompt_embeds,
- pooled_prompt_embeds=pooled_prompt_embeds,
- num_inference_steps=4, guidance_scale=0,
- height=height, width=width,
- output_type="latent",
- ).images
- latents = FluxPipeline._unpack_latents(latents, height, width, vae_scale_factor)
- latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor
- image = vae.decode(latents, return_dict=False)[0]
- image = image_processor.postprocess(image, output_type="pil")
- image[0].save("ChineseFLUX.jpg")
复制代码 MultilingualOpenFLUX.1
OpenFLUX.1
是对 FLUX.1-schnell 模型的微调,已对其进行了蒸馏练习。 请务必更新以下代码中下载的 fast-lora.safetensors 的路径。
- from diffusers import FluxPipeline, AutoencoderKL
- from diffusers.image_processor import VaeImageProcessor
- from transformers import T5ForConditionalGeneration,AutoTokenizer
- import torch
- import torch.nn as nn
- class MLP(nn.Module):
- def __init__(self, in_dim=4096, out_dim=4096, hidden_dim=4096, out_dim1=768, use_residual=True):
- super().__init__()
- self.layernorm = nn.LayerNorm(in_dim)
- self.projector = nn.Sequential(
- nn.Linear(in_dim, hidden_dim, bias=False),
- nn.GELU(),
- nn.Linear(hidden_dim, hidden_dim, bias=False),
- nn.GELU(),
- nn.Linear(hidden_dim, out_dim, bias=False),
- )
- self.fc = nn.Linear(out_dim, out_dim1)
- def forward(self, x):
- x = self.layernorm(x)
- x = self.projector(x)
- x2 = nn.GELU()(x)
- x1 = self.fc(x2)
- x1 = torch.mean(x1,1)
- return x1,x2
- dtype = torch.bfloat16
- device = "cuda"
- ckpt_id = "ostris/OpenFLUX.1"
- text_encoder_ckpt_id = 'google/byt5-xxl'
- proj_t5 = MLP(in_dim=4672, out_dim=4096, hidden_dim=4096, out_dim1=768).to(device=device,dtype=dtype)
- text_encoder_t5 = T5ForConditionalGeneration.from_pretrained(text_encoder_ckpt_id).get_encoder().to(device=device,dtype=dtype)
- tokenizer_t5 = AutoTokenizer.from_pretrained(text_encoder_ckpt_id)
- proj_t5_save_path = f"diffusion_pytorch_model.bin"
- state_dict = torch.load(proj_t5_save_path, map_location="cpu")
- state_dict_new = {}
- for k,v in state_dict.items():
- k_new = k.replace("module.","")
- state_dict_new[k_new] = v
- proj_t5.load_state_dict(state_dict_new)
- pipeline = FluxPipeline.from_pretrained(
- ckpt_id, text_encoder=None, text_encoder_2=None,
- tokenizer=None, tokenizer_2=None, vae=None,
- torch_dtype=torch.bfloat16
- ).to(device)
- pipeline.load_lora_weights("ostris/OpenFLUX.1/openflux1-v0.1.0-fast-lora.safetensors")
- vae = AutoencoderKL.from_pretrained(
- ckpt_id,
- subfolder="vae",
- torch_dtype=torch.bfloat16
- ).to(device)
- vae_scale_factor = 2 ** (len(vae.config.block_out_channels))
- image_processor = VaeImageProcessor(vae_scale_factor=vae_scale_factor)
- while True:
- raw_text = input("\nPlease Input Query (stop to exit) >>> ")
- if not raw_text:
- print('Query should not be empty!')
- continue
- if raw_text == "stop":
- break
- with torch.no_grad():
- text_inputs = tokenizer_t5(
- raw_text,
- padding="max_length",
- max_length=256,
- truncation=True,
- add_special_tokens=True,
- return_tensors="pt",
- ).input_ids.to(device)
- text_embeddings = text_encoder_t5(text_inputs)[0]
- pooled_prompt_embeds,prompt_embeds = proj_t5(text_embeddings)
- height, width = 1024, 1024
- latents = pipeline(
- prompt_embeds=prompt_embeds,
- pooled_prompt_embeds=pooled_prompt_embeds,
- num_inference_steps=4, guidance_scale=0,
- height=height, width=width,
- output_type="latent",
- ).images
- latents = FluxPipeline._unpack_latents(latents, height, width, vae_scale_factor)
- latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor
- image = vae.decode(latents, return_dict=False)[0]
- image = image_processor.postprocess(image, output_type="pil")
- image[0].save("ChineseOpenFLUX.jpg")
复制代码 免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |