1 Pandas序列Series
1.1 根据列表生成序列 Series
- X=[1,3,6,4,9];X
- weight=[67,66,83,68,70];weight
- sex=['女','男','男','女','男'];sex
- S1=pd.Series(X);S1
- S2=pd.Series(weight);S2
- S3=pd.Series(sex);S3
复制代码
1.2 序列合并concat
- pd.concat([S2,S3],axis=0) # 0维,附加到序列后面
- pd.concat([S2,S3],axis=1) # 1维,附加到新的一列
复制代码
1.3 序列切片

2 Pandas数据框DataFrame
2.1 空数据框DataFrame
2.2 根据列表创建数据框columns index
- pd.DataFrame(X)
- # 创建一个列名为`weight`,索引为`A` `B` `C` `D` `E`的数据框
- pd.DataFrame(weight,columns=['weight'],index=['A','B','C','D','E'])
复制代码
2.3 根据字典创建数据框
- df1=pd.DataFrame({'S1':S1,'S2':S2,'S3':S3});df1
复制代码 - # 索引来自列表`X`
- df2=pd.DataFrame({'sex':sex,'weight':weight},index=X);df2
复制代码
2.4 增加数据框列
- df2['weight2']=df2['weight']**2;df2
复制代码
2.5 删除数据框列del

2.6 缺失值处理 isnull() isnull().sum() dropna()
- df3=pd.DataFrame({'S2':S2,'S3':S3},index=S1);df3
- df3.isnull() # 缺失值则返回 True,否则返回 False
复制代码 - df3.isnull().sum() # 返回每列中包含的缺失值个数
复制代码 - df3.dropna() # 直接删除含有缺失值的行,多变量谨慎使用 不改变df3
复制代码
2.7 数据框排序
- df3.sort_index() # 按index排序
- df3.sort_values(by='S3') # 按S3列值排序
复制代码
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |