1.hudi的同步hive表没有comment
原以为hudi同步的hive表是根据数据写入的dataframe的schema创建的。就和spark write hive时类似,查察源码后发现不是。
1.1 hudi同步hive的模式
HMS , JDBC , HIVESQL。我这儿常用的是HMS和JDBC
各个同步模式对应的实行器:
1.2 schema天生
我们可以看到schema天生的代码块。先从提交的commit中获取元数据信息,没有的话则从数据文件中获取schema。两种方式获取到的schema都是没有comment信息的。
org.apache.hudi.common.table.TableSchemaResolver#getTableParquetSchema



- /**
- * Gets the schema for a hoodie table. Depending on the type of table, read from any file written in the latest
- * commit. We will assume that the schema has not changed within a single atomic write.
- *
- * @return Parquet schema for this table
- * @throws Exception
- */
- private MessageType getTableParquetSchemaFromDataFile() throws Exception {
- HoodieActiveTimeline activeTimeline = metaClient.getActiveTimeline();
- try {
- switch (metaClient.getTableType()) {
- case COPY_ON_WRITE:
- // If this is COW, get the last commit and read the schema from a file written in the
- // last commit
- HoodieInstant lastCommit =
- activeTimeline.getCommitsTimeline().filterCompletedInstants().lastInstant().orElseThrow(() -> new InvalidTableException(metaClient.getBasePath()));
- HoodieCommitMetadata commitMetadata = HoodieCommitMetadata
- .fromBytes(activeTimeline.getInstantDetails(lastCommit).get(), HoodieCommitMetadata.class);
- String filePath = commitMetadata.getFileIdAndFullPaths(metaClient.getBasePath()).values().stream().findAny()
- .orElseThrow(() -> new IllegalArgumentException("Could not find any data file written for commit "
- + lastCommit + ", could not get schema for table " + metaClient.getBasePath() + ", Metadata :"
- + commitMetadata));
- return readSchemaFromBaseFile(new Path(filePath));
- case MERGE_ON_READ:
- // If this is MOR, depending on whether the latest commit is a delta commit or
- // compaction commit
- // Get a datafile written and get the schema from that file
- Option<HoodieInstant> lastCompactionCommit =
- metaClient.getActiveTimeline().getCommitTimeline().filterCompletedInstants().lastInstant();
- LOG.info("Found the last compaction commit as " + lastCompactionCommit);
- Option<HoodieInstant> lastDeltaCommit;
- if (lastCompactionCommit.isPresent()) {
- lastDeltaCommit = metaClient.getActiveTimeline().getDeltaCommitTimeline().filterCompletedInstants()
- .findInstantsAfter(lastCompactionCommit.get().getTimestamp(), Integer.MAX_VALUE).lastInstant();
- } else {
- lastDeltaCommit =
- metaClient.getActiveTimeline().getDeltaCommitTimeline().filterCompletedInstants().lastInstant();
- }
- LOG.info("Found the last delta commit " + lastDeltaCommit);
- if (lastDeltaCommit.isPresent()) {
- HoodieInstant lastDeltaInstant = lastDeltaCommit.get();
- // read from the log file wrote
- commitMetadata = HoodieCommitMetadata.fromBytes(activeTimeline.getInstantDetails(lastDeltaInstant).get(),
- HoodieCommitMetadata.class);
- Pair<String, HoodieFileFormat> filePathWithFormat =
- commitMetadata.getFileIdAndFullPaths(metaClient.getBasePath()).values().stream()
- .filter(s -> s.contains(HoodieLogFile.DELTA_EXTENSION)).findAny()
- .map(f -> Pair.of(f, HoodieFileFormat.HOODIE_LOG)).orElseGet(() -> {
- // No Log files in Delta-Commit. Check if there are any parquet files
- return commitMetadata.getFileIdAndFullPaths(metaClient.getBasePath()).values().stream()
- .filter(s -> s.contains((metaClient.getTableConfig().getBaseFileFormat().getFileExtension())))
- .findAny().map(f -> Pair.of(f, HoodieFileFormat.PARQUET)).orElseThrow(() ->
- new IllegalArgumentException("Could not find any data file written for commit "
- + lastDeltaInstant + ", could not get schema for table " + metaClient.getBasePath()
- + ", CommitMetadata :" + commitMetadata));
- });
- switch (filePathWithFormat.getRight()) {
- case HOODIE_LOG:
- return readSchemaFromLogFile(lastCompactionCommit, new Path(filePathWithFormat.getLeft()));
- case PARQUET:
- return readSchemaFromBaseFile(new Path(filePathWithFormat.getLeft()));
- default:
- throw new IllegalArgumentException("Unknown file format :" + filePathWithFormat.getRight()
- + " for file " + filePathWithFormat.getLeft());
- }
- } else {
- return readSchemaFromLastCompaction(lastCompactionCommit);
- }
- default:
- LOG.error("Unknown table type " + metaClient.getTableType());
- throw new InvalidTableException(metaClient.getBasePath());
- }
- } catch (IOException e) {
- throw new HoodieException("Failed to read data schema", e);
- }
- }
复制代码 1.3建表DDL
获取到schema后,我们再看建表行为。
org.apache.hudi.hive.ddl.DDLExecutor#createTable 定义了这个接口建表方法。有两个实现类,一个是
org.apache.hudi.hive.ddl.HMSDDLExecutor。另一个是 org.apache.hudi.hive.ddl.QueryBasedDDLExecutor
首先,看org.apache.hudi.hive.ddl.HMSDDLExecutor#createTable方法:
ddl操作中利用的字段信息在HiveSchemaUtil.convertMapSchemaToHiveFieldSchema天生,可以直接在这个方法里看到字段的comment信息是直接写死为空字符串的。
再看,org.apache.hudi.hive.ddl.QueryBasedDDLExecutor#createTable方法。
方法里是通过HiveSchemaUtil.generateCreateDDL方法直接天生的ddl建表语句的。这个方法里generateSchemaString方法来天生字段信息的。在这个方法里,也是没有涉及comment信息的。
1.4结论
同步hive表是在 数据写入hudi目次后,根据目次里的schema来创建的hive表,所以创建的hive表没有带着dataframe的comment信息。需要手动实行修改字段comment。
2.追加comment
2.1.利用spark.sql的方式修改comment
用spark.sql()的方式实行 修改comment的sql语句,会调用hudi里的AlterHoodieTableChangeColumnCommand类。这个里面会比较schema,革新sparksession里的catalog信息,会让使命hang住。(为什么hang住没去排查)大概操作就是写一个利用新的schema的空数据集到hudi来实现schema更新。
org.apache.spark.sql.hudi.command.AlterHoodieTableChangeColumnCommand。
2.2利用hive-sql的方式修改comment
用hive-jdbc的方式实行修改sql语句。这个方式不会更新hive表里的 TBLPROPERTIES 的 'spark.sql.sources.schema.part.0’信息。
利用dataframe的schame.tojson ,去修改 ‘spark.sql.sources.schema.part.0’ 信息
- /**
- * 将 dataframe 中的comment加到 hudi的hive表中
- *
- * @param df dataframe
- * @param dbTable hive表
- * @param spark spark session
- */
- def addCommentForSyncHive(df: DataFrame, dbTable: String, spark: SparkSession, writeOptions: mutable.Map[String, String]): Unit = {
- val comment: Map[String, String] = df.schema.map(sf => (sf.name, sf.getComment().getOrElse(""))).toMap
- info(s"数据集的字段名->备注为:\n${comment.mkString("\n")}")
- val jdbcUrlOption = writeOptions.get(DataSourceWriteOptions.HIVE_URL.key())
- val jdbcUserOption = writeOptions.get(DataSourceWriteOptions.HIVE_USER.key())
- val jdbcPassOption = writeOptions.get(DataSourceWriteOptions.HIVE_PASS.key())
- assert(jdbcUrlOption.isDefined, s"${DataSourceWriteOptions.HIVE_URL.key()} 必须被指定")
- val connection = DbUtil.createHiveConnection(
- jdbcUrlOption.get, jdbcUserOption.getOrElse(""), jdbcPassOption.getOrElse("")
- )
- val stmt = connection.createStatement()
- //需要手动更新hive表中的spark.sql.sources.schema.part.0信息
- stmt.execute(s"ALTER TABLE $dbTable SET TBLPROPERTIES ('spark.sql.sources.schema.part.0' = '${df.schema.json}')")
- // 获取表字段和类型
- val tableSchema = spark.sql(s"DESCRIBE $dbTable")
- .select("col_name", "data_type")
- .collect()
- .map(row => (row.getString(0), row.getString(1)))
- tableSchema.foreach { case (column, dataType) =>
- if (comment.contains(column) && !Seq("ym", "ymd").contains(column)) {
- val newComment = comment.getOrElse(column, "")
- val sql = s"""ALTER TABLE $dbTable CHANGE COLUMN $column $column $dataType COMMENT '$newComment'"""
- info(s"添加备注执行sql:$sql")
- try {
- stmt.execute(sql)
- } catch {
- case e:Throwable =>
- warn("添加备注sql执行失败")
- }
- }
- }
- stmt.close()
- connection.close()
- }
复制代码 修改’spark.sql.sources.schema.part.0’时,因为schema带有备注,会很长,导致超过hive表元数据mysql表字段的长度限制。去mysql中修改这个长度限制(table_params表PARAM_VALUE字段)。

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |