概要
在上一个文章咱们已经实现了一个基于llama3.1的大语言模子(LLM模子)。本日咱们继承来利用Omega-AI深度学习引擎从零实现一个stable diffusion模子,并实现文生图场景应用。
Omega-AI深度学习引擎
Omega-AI:基于java打造的深度学习框架,资助你快速搭建神经网络,实现训练或测试模子,支持多卡训练,框架现在支持BP神经网络、卷积神经网络、循环神经网络、vgg16、resnet、yolo、lstm、transformer、diffusion、gpt、llama、llava等模子的构建,现在引擎最新版本支持CUDA和CUDNN两种GPU加速方式,关于GPU加速的环境配置与jcuda版本jar包的对应依靠。
Omega-AI简介
JAVA实现从零大语言模子llama3
结果展示
基于stable diffusion模子实现文生图
文生图演示图
文本1图片1文本2图片2a highly detailed anime landscape,big tree on the water, epic sky,golden grass,detailed.3d art of a golden tree in the river,with intricate flora and flowing water,detailed.a vibrant anime mountain landsa dark warrior in epic armor stands among glowing crimson leaves in a mystical forest.cute fluffy panda, anime, ghibli style, pastel colors, soft shadows, detailed fur, vibrant eyes, fantasy setting, digital art, 3d, by kazuo ogaa epic city,3d,detailed. Quick Start
环境配置
- // 检查当前安装的CUDA版本
- nvcc --version
复制代码 安装CUDA与CUDNN
https://developer.nvidia.com/cuda-toolkit-archive
下载与配置Omega-AI深度学习引擎
- git clone https://github.com/dromara/Omega-AI.git
- git clone https://gitee.com/dromara/omega-ai.git
复制代码
- 根据当前CUDA版本配置JCUDA依靠
打开Omega-AI pom.xml文件,根据当前CUDA版本修改依靠
提示:如您安装的cuda版本为12.x,请利用jcuda12.0.0版本
- <properties>
- <java.version>1.8</java.version>
- <!--当前cuda版本为11.8.x,对应jcuda版本为11.8.0-->
- <jcuda.version>11.8.0</jcuda.version>
- <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
- <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
- <resource.delimiter>@</resource.delimiter>
- <maven.compiler.source>${java.version}</maven.compiler.source>
- <maven.compiler.target>${java.version}</maven.compiler.target>
- </properties>
复制代码 stable diffusion架构
传统的扩散模子有两大限定:1.输入图片尺寸与计算量巨细限定导致效率低下,2.只能输入随机噪声导致无法控制输出结果。而stable diffsuion引入了latent space概念,使得在其可以在较少的内存占用完成高清的图片天生。在解决只能输入随机噪声的题目上,stable diffusion利用了clip text的text encoder把文本信息作为条件输入到text conditioned lantent unet当中,并利用cross attention把text条件与图像融合。总结以上内容,stable diffsuion总共分为三大组件:VAE(变分自编码器)负责把图片编码成相对较小的latent space数据和解码latent space还原成正常巨细的图片。CLIP TEXT当中的text encoder负责把文本内容编码成77*512的 token embeddings。lantent unet负责结合条件天生latent space,与传统的diffusion模子的unet相比,stable diffusion的unet利用的是cross attention机制,目标就是为了融合条件信息。以下是stable diffusion流程图:
1 STEP 训练VQ-VAE(变分自编码器)
1.1下载与预处理训练数据
- 本次使命将利用开源动画风格的图文对数据集【rapidata】点击下载
- 处理图片巨细统一为256 * 256或者512 * 512
- 制作元数据并存储为json文件,数据格式为:[{“id”: “0”, “en”: “cinematic bokeh: ironcat, sharp focus on the cat’s eyes, blurred background, dramatic chiaroscuro lighting, deep shadows, high contrast, rich textures, high resolution”}]
提示:可下载已经处理好的数据集
点击下载已处理后的数据集
- 利用数据加载器读取训练数据,代码如下:
- int batchSize = 2;
- int imageSize = 256;
- float[] mean = new float[] {0.5f, 0.5f, 0.5f};
- float[] std = new float[] {0.5f, 0.5f, 0.5f};
- String imgDirPath = "I:\\dataset\\sd-anime\\anime_op\\256\";
- DiffusionImageDataLoader dataLoader = new DiffusionImageDataLoader(imgDirPath, imageSize, imageSize, batchSize, true, false, mean, std);
复制代码 1.2 创建VQ-VAE模子
- /**
- * LossType lossType: 损失函数
- * UpdaterType updater, 参数更新方法
- * int z_dims, 输出latent space维度
- * int latendDim, 输出latent space通道数
- * latent space形状为[batchSize, latendDim, z_dims, z_dims]
- * int num_res_blocks, 每个采样层所包含的residual层数
- * int imageSize, 输入图片大小
- * int[] ch_mult, unet上下采样层通道倍数
- * int ch, unet上下采样层通道基数
- */
- VQVAE2 network = new VQVAE2(LossType.MSE, UpdaterType.adamw, z_dims, latendDim, num_vq_embeddings, imageSize, ch_mult, ch, num_res_blocks);
复制代码 1.3 创建LPIPS模子
为了增强vae的还原图片的清晰度,在训练vae模子的过程中添加lpips(感知丧失),该模子用于度量两张图片之间的差别。
- /**
- * LossType lossType: 损失函数(均方差损失函数)
- * UpdaterType updater, 参数更新方法
- * int imageSize, 输入图片大小
- */
- LPIPS lpips = new LPIPS(LossType.MSE, UpdaterType.adamw, imageSize);
复制代码 完整训练代码如下:
- public static void anime_vqvae2_lpips_gandisc_32_nogan() {
- try {
- nt batchSize = 16;
- int imageSize = 256;
- int z_dims = 32;
- int latendDim = 4;
- int num_vq_embeddings = 512;
- int num_res_blocks = 1;
- int[] ch_mult = new int[] {1, 2, 2, 4};
- int ch = 32;
- float[] mean = new float[] {0.5f, 0.5f, 0.5f};
- float[] std = new float[] {0.5f, 0.5f, 0.5f};
-
- String imgDirPath = "I:\\dataset\\sd-anime\\anime_op\\256\";
- DiffusionImageDataLoader dataLoader = new DiffusionImageDataLoader(imgDirPath, imageSize, imageSize, batchSize, true, false, mean, std);
- /**
- * LossType lossType: 损失函数
- * UpdaterType updater, 参数更新方法
- * int z_dims, 输出latent space维度
- * int latendDim, 输出latent space通道数
- * latent space形状为[batchSize, latendDim, z_dims, z_dims]
- * int num_res_blocks, 每个采样层所包含的residual层数
- * int imageSize, 输入图片大小
- * int[] ch_mult, unet上下采样层通道倍数
- * int ch, unet上下采样层通道基数
- */
- VQVAE2 network = new VQVAE2(LossType.MSE, UpdaterType.adamw, z_dims, latendDim, num_vq_embeddings, imageSize, ch_mult, ch, num_res_blocks);
- network.CUDNN = true;
- network.learnRate = 0.001f;
-
- LPIPS lpips = new LPIPS(LossType.MSE, UpdaterType.adamw, imageSize);
- //加载权重
- String lpipsWeight = "H:\\model\\lpips.json";
- LPIPSTest.loadLPIPSWeight(LagJsonReader.readJsonFileSmallWeight(lpipsWeight), lpips, false);
- lpips.CUDNN = true;
-
- MBSGDOptimizer optimizer = new MBSGDOptimizer(network, 200, 0.00001f, batchSize, LearnRateUpdate.CONSTANT, false);
- optimizer.trainVQVAE2_lpips_nogan(dataLoader, lpips);
- String save_model_path = "/omega/models/anime_vqvae2_256.model";
- ModelUtils.saveModel(network, save_model_path);
- } catch (Exception e) {
- // TODO: handle exception
- e.printStackTrace();
- }
- }
复制代码 VQ-VAE演示图
原图VQ-VAE原图VQ-VAE 2 STEP 训练diffusion unet cond(条件扩散模子)
2.1 创建与加载Clip Text Encoder
本次使命利用clip-vit-base-patch32的encoder部分作为text encoder。
- /**
- * clipText shape[batchSize, 77, 512]
- */
- int time = maxContextLen; //文本最大token长度
- int maxPositionEmbeddingsSize = 77; //文本最大token长度
- int vocabSize = 49408; //tokenizer词表长度
- int headNum = 8; //多头注意力头数
- int n_layers = 12; //CLIPEncoderLayer编码层层数
- int textEmbedDim = 512; //文本嵌入输出维度
- ClipTextModel clip = new ClipTextModel(LossType.MSE, UpdaterType.adamw, headNum, time, vocabSize, textEmbedDim, maxPositionEmbeddingsSize, n_layers);
- clip.CUDNN = true;
- clip.time = time;
- clip.RUN_MODEL = RunModel.EVAL; //设置推理模式
-
- String clipWeight = "H:\\model\\clip-vit-base-patch32.json";
- ClipModelUtils.loadWeight(LagJsonReader.readJsonFileSmallWeight(clipWeight), clip, true);
复制代码 2.2 创建与加载VQ-VAE模子
- /**
- * LossType lossType: 损失函数
- * UpdaterType updater, 参数更新方法
- * int z_dims, 输出latent space维度
- * int latendDim, 输出latent space通道数
- * latent space形状为[batchSize, latendDim, z_dims, z_dims]
- * int num_res_blocks, 每个采样层所包含的residual层数
- * int imageSize, 输入图片大小
- * int[] ch_mult, unet上下采样层通道倍数
- * int ch, unet上下采样层通道基数
- */
- VQVAE2 vae = new VQVAE2(LossType.MSE, UpdaterType.adamw, z_dims, latendDim, num_vq_embeddings, imageSize, ch_mult, ch, num_res_blocks);
- vae.RUN_MODEL = RunModel.EVAL; //设置推理模式
- //加载已训练好的vae模型权重
- String vaeModel = "anime_vqvae2_256.model";
- ModelUtils.loadModel(vae, vaeModel);
复制代码 2.3 创建Diffusion UNet Cond模子(条件扩散模子)
- int unetHeadNum = 8; //unet多头注意力头数
- int[] downChannels = new int[] {128, 256, 512, 768}; //下采样通道数
- int numLayer = 2; //每层采样层的ResidualBlock个数
- int timeSteps = 1000; //扩散时间步数
- int tEmbDim = 512; //时序嵌入维度
- int latentSize = 32; //latent space维度
- int groupNum = 32; //group norm分组数
-
- DiffusionUNetCond2 unet = new DiffusionUNetCond2(LossType.MSE, UpdaterType.adamw, latendDim, latentSize, latentSize, downChannels, unetHeadNum, numLayer, timeSteps, tEmbDim, maxContextLen, textEmbedDim, groupNum);
- unet.CUDNN = true;
- unet.learnRate = 0.0001f;
复制代码 完整训练代码如下:
- public static void tiny_sd_train_anime_32() throws Exception {
- String labelPath = "I:\\dataset\\sd-anime\\anime_op\\data.json";
- String imgDirPath = "I:\\dataset\\sd-anime\\anime_op\\256\";
- boolean horizontalFilp = true;
- int imgSize = 256;
- int maxContextLen = 77;
- int batchSize = 8;
- float[] mean = new float[] {0.5f, 0.5f,0.5f};
- float[] std = new float[] {0.5f, 0.5f,0.5f};
- //加载bpe tokenizer分词器
- String vocabPath = "H:\\model\\bpe_tokenizer\\vocab.json";
- String mergesPath = "H:\\model\\bpe_tokenizer\\merges.txt";
- BPETokenizerEN bpe = new BPETokenizerEN(vocabPath, mergesPath, 49406, 49407);
-
- SDImageDataLoaderEN dataLoader = new SDImageDataLoaderEN(bpe, labelPath, imgDirPath, imgSize, imgSize, maxContextLen, batchSize, horizontalFilp, mean, std);
-
- /**
- * clipText shape[batchSize, 77, 512]
- */
- int time = maxContextLen; //文本最大token长度
- int maxPositionEmbeddingsSize = 77; //文本最大token长度
- int vocabSize = 49408; //tokenizer词表长度
- int headNum = 8; //多头注意力头数
- int n_layers = 12; //CLIPEncoderLayer编码层层数
- int textEmbedDim = 512; //文本嵌入输出维度
- ClipTextModel clip = new ClipTextModel(LossType.MSE, UpdaterType.adamw, headNum, time, vocabSize, textEmbedDim, maxPositionEmbeddingsSize, n_layers);
- clip.CUDNN = true;
- clip.time = time;
- clip.RUN_MODEL = RunModel.EVAL;
-
- String clipWeight = "H:\\model\\clip-vit-base-patch32.json";
- ClipModelUtils.loadWeight(LagJsonReader.readJsonFileSmallWeight(clipWeight), clip, true);
-
- int z_dims = 128;
- int latendDim = 4;
- int num_vq_embeddings = 512;
- int num_res_blocks = 2;
- int[] ch_mult = new int[] {1, 2, 2, 4};
- int ch = 128;
-
- VQVAE2 vae = new VQVAE2(LossType.MSE, UpdaterType.adamw, z_dims, latendDim, num_vq_embeddings, imgSize, ch_mult, ch, num_res_blocks);
- vae.CUDNN = true;
- vae.learnRate = 0.001f;
- vae.RUN_MODEL = RunModel.EVAL;
- String vaeModel = "anime_vqvae2_256.model";
- ModelUtils.loadModel(vae, vaeModel);
-
- int unetHeadNum = 8; //unet多头注意力头数
- int[] downChannels = new int[] {128, 256, 512, 768}; //下采样通道数
- int numLayer = 2; //每层采样层的ResidualBlock个数
- int timeSteps = 1000; //扩散时间步数
- int tEmbDim = 512; //时序嵌入维度
- int latentSize = 32; //latent space维度
- int groupNum = 32; //group norm分组数
-
- DiffusionUNetCond2 unet = new DiffusionUNetCond2(LossType.MSE, UpdaterType.adamw, latendDim, latentSize, latentSize, downChannels, unetHeadNum, numLayer, timeSteps, tEmbDim, maxContextLen, textEmbedDim, groupNum);
- unet.CUDNN = true;
- unet.learnRate = 0.0001f;
-
- MBSGDOptimizer optimizer = new MBSGDOptimizer(unet, 500, 0.00001f, batchSize, LearnRateUpdate.CONSTANT, false);
- optimizer.trainTinySD_Anime(dataLoader, vae, clip);
- //保存训练完成的权重文件
- String save_model_path = "/omega/models/sd_anime256.model";
- ModelUtils.saveModel(unet, save_model_path);
- }
复制代码 推理代码如下:
- public static void tiny_sd_predict_anime_32() throws Exception {
-
- int imgSize = 256;
- int maxContextLen = 77;
- String vocabPath = "H:\\model\\bpe_tokenizer\\vocab.json";
- String mergesPath = "H:\\model\\bpe_tokenizer\\merges.txt";
- BPETokenizerEN tokenizer = new BPETokenizerEN(vocabPath, mergesPath, 49406, 49407);
-
- int time = maxContextLen;
- int maxPositionEmbeddingsSize = 77;
- int vocabSize = 49408;
- int headNum = 8;
- int n_layers = 12;
- int textEmbedDim = 512;
-
- ClipTextModel clip = new ClipTextModel(LossType.MSE, UpdaterType.adamw, headNum, time, vocabSize, textEmbedDim, maxPositionEmbeddingsSize, n_layers);
- clip.CUDNN = true;
- clip.time = time;
- clip.RUN_MODEL = RunModel.EVAL;
-
- String clipWeight = "H:\\model\\clip-vit-base-patch32.json";
- ClipModelUtils.loadWeight(LagJsonReader.readJsonFileSmallWeight(clipWeight), clip, true);
-
- int z_dims = 128;
- int latendDim = 4;
- int num_vq_embeddings = 512;
- int num_res_blocks = 2;
- int[] ch_mult = new int[] {1, 2, 2, 4};
- int ch = 128;
-
- VQVAE2 vae = new VQVAE2(LossType.MSE, UpdaterType.adamw, z_dims, latendDim, num_vq_embeddings, imgSize, ch_mult, ch, num_res_blocks);
- vae.CUDNN = true;
- vae.learnRate = 0.001f;
- vae.RUN_MODEL = RunModel.EVAL;
-
- String vaeModel = "H:\\model\\anime_vqvae2_256.model";
- ModelUtils.loadModel(vae, vaeModel);
-
- int unetHeadNum = 8;
- int[] downChannels = new int[] {64, 128, 256, 512};
- int numLayer = 2;
- int timeSteps = 1000;
- int tEmbDim = 512;
- int latendSize = 32;
- int groupNum = 32;
- int batchSize = 1;
-
- DiffusionUNetCond2 unet = new DiffusionUNetCond2(LossType.MSE, UpdaterType.adamw, latendDim, latendSize, latendSize, downChannels, unetHeadNum, numLayer, timeSteps, tEmbDim, maxContextLen, textEmbedDim, groupNum);
- unet.CUDNN = true;
- unet.learnRate = 0.0001f;
- unet.RUN_MODEL = RunModel.TEST;
-
- String model_path = "H:\\model\\sd_anime256.model";
- ModelUtils.loadModel(unet, model_path);
-
- Scanner scanner = new Scanner(System.in);
-
- // Tensor latent = new Tensor(batchSize, latendDim, latendSize, latendSize, true);
- Tensor t = new Tensor(batchSize, 1, 1, 1, true);
- Tensor label = new Tensor(batchSize * unet.maxContextLen, 1, 1, 1, true);
-
- Tensor input = new Tensor(batchSize, 3, imgSize, imgSize, true);
- Tensor latent = vae.encode(input);
-
- while (true) {
- System.out.println("请输入英文:");
- String input_txt = scanner.nextLine();
- if(input_txt.equals("exit")){
- break;
- }
- input_txt = input_txt.toLowerCase();
-
- loadLabels(input_txt, label, tokenizer, unet.maxContextLen);
- Tensor condInput = clip.forward(label);
- String[] labels = new String[] {input_txt, input_txt};
- MBSGDOptimizer.testSD(input_txt, latent, t, condInput, unet, vae, labels, "H:\\vae_dataset\\anime_test256\");
- }
- scanner.close();
- }
复制代码 以上代码所需的文件请移步到百度云盘下载 点击下载
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |