SQLSERVER 的主键索引真的是物理有序吗?

打印 上一主题 下一主题

主题 614|帖子 614|积分 1842

一:背景

1. 讲故事

最近在看 SQL SERVER 2008 查询性能优化,书中说当一个表创建了聚集索引,那么表中的行会按照主键索引的顺序物理排列,这里有一个关键词叫:物理排列,如果不了解底层原理,真的会被忽悠过去,其实仔细想一想不可能实现严格的 物理排列 ,那对性能是非常大的损害,本篇我们就从底层出发聊一聊到底是怎么回事。
二:原理探究

1. 我认为的物理排列

如果用 C# 代码来演示严格的物理排列,大概是这样的。
  1.         static void Main(string[] args)
  2.         {
  3.             List<int> list = new List<int>() {1,2,4,5 };
  4.             list.Insert(2, 3);
  5.             Console.WriteLine(string.Join(",", list));
  6.         }
复制代码

从代码看我用 Insert 将 3 插入到了 list 集合中形成了物理有序,但不要忘了 Insert 的复杂度是 O(N),而且还要将 3 后面的数据整体挪动,可以参考源码中的 Array.Copy 方法。
  1. public void Insert(int index, T item)
  2. {
  3.     if (_size == _items.Length)
  4.     {
  5.         EnsureCapacity(_size + 1);
  6.     }
  7.     if (index < _size)
  8.     {
  9.         Array.Copy(_items, index, _items, index + 1, _size - index);
  10.     }
  11.     _items[index] = item;
  12.     _size++;
  13.     _version++;
  14. }
复制代码
现在你可以想一想,如果我们每次在 Insert 的时候 SQLSERVER 都要将数据页上的数据往后挪,那这个性能有多差?
2. 观察聚集索引下的数据排序

为了方便讲述,先创建一个测试表,插入 4 条记录,再创建一个聚集索引,sql 代码如下:
  1. IF OBJECT_ID('t') IS NOT NULL DROP TABLE t;
  2. CREATE TABLE t (a CHAR(5), b INT)
  3. INSERT INTO t(a,b) VALUES('aaaaa',1);
  4. INSERT INTO t(a,b) VALUES('ddddd',4);
  5. INSERT INTO t(a,b) VALUES('ccccc',3);
  6. INSERT INTO t(a,b) VALUES('eeeee',5);
  7. CREATE CLUSTERED INDEX idx_a ON t(a);
复制代码

从图中看数据果然是有序的,严格的按照 a , c, d , e  排序,接下来用 dbcc 观察下在底层数据页上这几条记录是不是物理有序的? 查询 SQL 如下:
  1. DBCC TRACEON(3604)
  2. DBCC IND(MyTestDB,t,-1)
  3. DBCC PAGE(MyTestDB,1,472,2)
复制代码
Page数据页的输出结果如下:
  1. PAGE: (1:472)
  2. PAGE HEADER:
  3. Page @0x000002C6E75D0000
  4. m_pageId = (1:472)                  m_headerVersion = 1                 m_type = 1
  5. m_typeFlagBits = 0x0                m_level = 0                         m_flagBits = 0x4
  6. m_objId (AllocUnitId.idObj) = 269   m_indexId (AllocUnitId.idInd) = 256
  7. Metadata: AllocUnitId = 72057594055557120                                
  8. Metadata: PartitionId = 72057594048348160                                Metadata: IndexId = 1
  9. Metadata: ObjectId = 850102069      m_prevPage = (0:0)                  m_nextPage = (0:0)
  10. pminlen = 13                        m_slotCnt = 4                       m_freeCnt = 8024
  11. m_freeData = 160                    m_reservedCnt = 0                   m_lsn = (49:1616:23)
  12. m_xactReserved = 0                  m_xdesId = (0:0)                    m_ghostRecCnt = 0
  13. m_tornBits = 0                      DB Frag ID = 1                     
  14. Allocation Status
  15. GAM (1:2) = ALLOCATED               SGAM (1:3) = NOT ALLOCATED          PFS (1:1) = 0x40 ALLOCATED   0_PCT_FULL
  16. DIFF (1:6) = CHANGED                ML (1:7) = NOT MIN_LOGGED           
  17. DATA:
  18. Memory Dump @0x000000DF137F8000
  19. 000000DF137F8000:   01010000 04000001 00000000 00000d00 00000000  ....................
  20. 000000DF137F8014:   00000400 0d010000 581fa000 d8010000 01000000  ........X...........
  21. 000000DF137F8028:   31000000 50060000 17000000 00000000 00000000  1...P...............
  22. 000000DF137F803C:   00000000 01000000 00000000 00000000 00000000  ....................
  23. 000000DF137F8050:   00000000 00000000 00000000 00000000 10000d00  ....................
  24. 000000DF137F8064:   61616161 61010000 00030000 10000d00 63636363  aaaaa...........cccc
  25. 000000DF137F8078:   63030000 00030000 10000d00 64646464 64040000  c...........ddddd...
  26. 000000DF137F808C:   00030000 10000d00 65656565 65050000 00030000  ........eeeee.......
  27. 000000DF137F80A0:   00002121 21212121 21212121 21212121 21212121  ..!!!!!!!!!!!!!!!!!!
  28. ...
复制代码
从 Memory Dump 区节的内存地址看,这四条记录果然是有序的,
3. 真的按照物理有序吗

接下来就是关键了,到底是不是物理有序,我们再插入一条 bbbbb 记录,看下会不会将 ccccc 所在的内存地址上的内容整体往后挪?测试的 sql 语句如下:
  1. INSERT INTO t(a,b) VALUES('bbbbb',2);
  2. SELECT * FROM t;
复制代码

从图片看,貌似真的给塞进去了,那到底是不是这样呢? 带着好奇心再次观察下底层的索引数据页。
  1. PAGE: (1:472)
  2. PAGE HEADER:
  3. Page @0x000002C6D76C4000
  4. m_pageId = (1:472)                  m_headerVersion = 1                 m_type = 1
  5. m_typeFlagBits = 0x0                m_level = 0                         m_flagBits = 0x0
  6. m_objId (AllocUnitId.idObj) = 269   m_indexId (AllocUnitId.idInd) = 256
  7. Metadata: AllocUnitId = 72057594055557120                                
  8. Metadata: PartitionId = 72057594048348160                                Metadata: IndexId = 1
  9. Metadata: ObjectId = 850102069      m_prevPage = (0:0)                  m_nextPage = (0:0)
  10. pminlen = 13                        m_slotCnt = 5                       m_freeCnt = 8006
  11. m_freeData = 176                    m_reservedCnt = 0                   m_lsn = (49:1640:2)
  12. m_xactReserved = 0                  m_xdesId = (0:0)                    m_ghostRecCnt = 0
  13. m_tornBits = 487522741              DB Frag ID = 1                     
  14. Allocation Status
  15. GAM (1:2) = ALLOCATED               SGAM (1:3) = NOT ALLOCATED          PFS (1:1) = 0x40 ALLOCATED   0_PCT_FULL
  16. DIFF (1:6) = CHANGED                ML (1:7) = NOT MIN_LOGGED           
  17. DATA:
  18. Memory Dump @0x000000DF0FDF8000
  19. 000000DF0FDF8000:   01010000 00000001 00000000 00000d00 00000000  ....................
  20. 000000DF0FDF8014:   00000500 0d010000 461fb000 d8010000 01000000  ........F...........
  21. 000000DF0FDF8028:   31000000 68060000 02000000 00000000 00000000  1...h...............
  22. 000000DF0FDF803C:   b5010f1d 01000000 00000000 00000000 00000000  ....................
  23. 000000DF0FDF8050:   00000000 00000000 00000000 00000000 10000d00  ....................
  24. 000000DF0FDF8064:   61616161 61010000 00030000 10000d00 63636363  aaaaa...........cccc
  25. 000000DF0FDF8078:   63030000 00030000 10000d00 64646464 64040000  c...........ddddd...
  26. 000000DF0FDF808C:   00030000 10000d00 65656565 65050000 00030000  ........eeeee.......
  27. 000000DF0FDF80A0:   10000d00 62626262 62020000 00030000 00002121  ....bbbbb.........!!
  28. 000000DF0FDF80B4:   21212121 21212121 21212121 21212121 21212121  !!!!!!!!!!!!!!!!!!!!
  29. ...
  30. 000000DF0FDF9FF4:   21219000 80007000 a0006000                    !!....p...`.
  31. OFFSET TABLE:
  32. Row - Offset                        
  33. 4 (0x4) - 144 (0x90)               
  34. 3 (0x3) - 128 (0x80)               
  35. 2 (0x2) - 112 (0x70)               
  36. 1 (0x1) - 160 (0xa0)               
  37. 0 (0x0) - 96 (0x60)      
复制代码
从 Memory Dump 节的内存地址看,bbbbb 并没有插入到 aaaaa 和 cccccc 之间,而是写入到页面尾部的空闲空间中,接下来就有一个问题了,为什么 sql 输出中是有序的呢?怎么做到的? 如果你了解 Page 的 Slot 布局,你会发现 Slot1 指向的就是 bbbbb 这条记录的首地址,画一张图就是这样。

从图中我们就明白了最终的原理,当 Insert 时,SQLSERVER 并没有对表记录重排,而只是将指向的 Slot 槽位进行了重排,将物理无序做成了一种逻辑有序。
三:总结

其实大家只要往高性能上想,肯定不会实现物理有序的,太伤性能了,在 物理无序 上抽象出一层 逻辑有序 不失为一种好办法。

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

x
回复

使用道具 举报

0 个回复

倒序浏览

快速回复

您需要登录后才可以回帖 登录 or 立即注册

本版积分规则

灌篮少年

金牌会员
这个人很懒什么都没写!

标签云

快速回复 返回顶部 返回列表