一、前言
2018年写过一篇分库分表的文章《SpringBoot使用sharding-jdbc分库分表》,但是存在很多不完美的地方比如:
- sharding-jdbc的版本(1.4.2)过低,现在github上的最新版本都是5.3.2了,很多用法和API都过时了。
- 分库分表配置采用Java硬编码的方式不够灵活
- 持久层使用的是spring-boot-starter-data-jpa,而不是主流的mybatis+mybatis-plus+druid-spring-boot-stater
- 没有支持自定义主键生成策略
二、设计思路
针对上述问题,本人计划开发一个通用的分库分表starter,具备以下特性:
- 基于ShardingSphere-JDBC版本4.1.1,官方支持的特性我们都支持
- 支持yaml文件配置,无需编码开箱即用
- 支持多种数据源,整合主流的mybatis
- 支持自定义主键生成策略,并提供默认的雪花算法实现
通过查看官方文档,可以发现starter的核心逻辑就是获取分库分表等配置,然后在自动配置类创建数据源注入Spring容器即可。
三、编码实现
3.1 starter工程搭建
首先创建一个spring-boot-starter工程ship-sharding-spring-boot-starter,不会的小伙伴可以参考以前写的教程《【SpringBoot】编写一个自己的Starter》。
创建自动配置类cn.sp.sharding.config.ShardingAutoConfig,并在resources/META-INF/spring.factories文件中配置自动配置类的全路径。- org.springframework.boot.autoconfigure.EnableAutoConfiguration=cn.sp.sharding.config.ShardingAutoConfig
复制代码 然后需要在pom.xml文件引入sharding-jbc依赖和工具包guava。- <properties>
- <java.version>8</java.version>
- <spring-boot.version>2.4.0</spring-boot.version>
- <sharding-jdbc.version>4.1.1</sharding-jdbc.version>
- </properties>
-
- <dependency>
- <groupId>org.apache.shardingsphere</groupId>
- <artifactId>sharding-jdbc-core</artifactId>
- <version>${sharding-jdbc.version}</version>
- </dependency>
- <dependency>
- <groupId>com.google.guava</groupId>
- <artifactId>guava</artifactId>
- <version>18.0</version>
- </dependency>
复制代码 3.2 注入ShardingDataSource
分库分表配置这块,为了方便自定义配置前缀,创建ShardingRuleConfigurationProperties类继承sharding-jbc的YamlShardingRuleConfiguration类即可,代码如下:- /**
- * @author Ship
- * @version 1.0.0
- * @description:
- * @date 2023/06/06
- */
- @ConfigurationProperties(prefix = CommonConstants.COMMON_CONFIG_PREFIX + ".config")
- public class ShardingRuleConfigurationProperties extends YamlShardingRuleConfiguration {
- }
复制代码 同时sharding-jbc支持自定义一些properties属性,需要单独创建类ConfigMapConfigurationProperties- /**
- * @Author: Ship
- * @Description:
- * @Date: Created in 2023/6/6
- */
- @ConfigurationProperties(prefix = CommonConstants.COMMON_CONFIG_PREFIX + ".map")
- public class ConfigMapConfigurationProperties {
- private Properties props = new Properties();
- public Properties getProps() {
- return props;
- }
- public void setProps(Properties props) {
- this.props = props;
- }
- }
复制代码 官方提供了ShardingDataSourceFactory工厂类来创建数据源,但是查看其源码发现createDataSource方法的参数是ShardingRuleConfiguration类,而不是YamlShardingRuleConfiguration。- @NoArgsConstructor(access = AccessLevel.PRIVATE)
- public final class ShardingDataSourceFactory {
-
- /**
- * Create sharding data source.
- *
- * @param dataSourceMap data source map
- * @param shardingRuleConfig rule configuration for databases and tables sharding
- * @param props properties for data source
- * @return sharding data source
- * @throws SQLException SQL exception
- */
- public static DataSource createDataSource(
- final Map<String, DataSource> dataSourceMap, final ShardingRuleConfiguration shardingRuleConfig, final Properties props) throws SQLException {
- return new ShardingDataSource(dataSourceMap, new ShardingRule(shardingRuleConfig, dataSourceMap.keySet()), props);
- }
- }
复制代码 该如何解决配置类参数转换的问题呢?
幸好查找官方文档发现sharding-jdbc提供了YamlSwapper类来实现yaml配置和核心配置的转换- /**
- * YAML configuration swapper.
- *
- * @param <Y> type of YAML configuration
- * @param <T> type of swapped object
- */
- public interface YamlSwapper<Y extends YamlConfiguration, T> {
-
- /**
- * Swap to YAML configuration.
- *
- * @param data data to be swapped
- * @return YAML configuration
- */
- Y swap(T data);
-
- /**
- * Swap from YAML configuration to object.
- *
- * @param yamlConfiguration YAML configuration
- * @return swapped object
- */
- T swap(Y yamlConfiguration);
- }
复制代码 ShardingRuleConfigurationYamlSwapper就是YamlSwapper的其中一个实现类。
于是,ShardingAutoConfig的最终代码如下:- package cn.sp.sharding.config;
- /**
- * @author Ship
- * @version 1.0.0
- * @description:
- * @date 2023/06/06
- */
- @AutoConfigureBefore(name = CommonConstants.MYBATIS_PLUS_CONFIG_CLASS)
- @Configuration
- @EnableConfigurationProperties(value = {ShardingRuleConfigurationProperties.class, ConfigMapConfigurationProperties.class})
- @Import(DataSourceHealthConfig.class)
- public class ShardingAutoConfig implements EnvironmentAware {
- private Map<String, DataSource> dataSourceMap = new HashMap<>();
- @ConditionalOnMissingBean
- @Bean
- public DataSource shardingDataSource(@Autowired ShardingRuleConfigurationProperties configurationProperties,
- @Autowired ConfigMapConfigurationProperties configMapConfigurationProperties) throws SQLException {
- ShardingRuleConfigurationYamlSwapper yamlSwapper = new ShardingRuleConfigurationYamlSwapper();
- ShardingRuleConfiguration shardingRuleConfiguration = yamlSwapper.swap(configurationProperties);
- return ShardingDataSourceFactory.createDataSource(dataSourceMap, shardingRuleConfiguration, configMapConfigurationProperties.getProps());
- }
- @Override
- public void setEnvironment(Environment environment) {
- setDataSourceMap(environment);
- }
- private void setDataSourceMap(Environment environment) {
- String names = environment.getProperty(CommonConstants.DATA_SOURCE_CONFIG_PREFIX + ".names");
- for (String name : names.split(",")) {
- try {
- String propertiesPrefix = CommonConstants.DATA_SOURCE_CONFIG_PREFIX + "." + name;
- Map<String, Object> dataSourceProps = PropertyUtil.handle(environment, propertiesPrefix, Map.class);
- // 反射创建数据源
- DataSource dataSource = DataSourceUtil.getDataSource(dataSourceProps.get("type").toString(), dataSourceProps);
- dataSourceMap.put(name, dataSource);
- } catch (ReflectiveOperationException e) {
- e.printStackTrace();
- } catch (Exception e) {
- e.printStackTrace();
- }
- }
- }
- }
复制代码 利用反射创建数据源,就可以解决支持多种数据源的问题。
3.3 自定义主键生成策略
sharding-jdbc提供了UUID和Snowflake两种默认实现,但是自定义主键生成策略更加灵活,方便根据自己的需求调整,接下来介绍如何自定义主键生成策略。
因为我们也是用的雪花算法,所以可以直接用sharding-jdbc提供的雪花算法类,KeyGeneratorFactory负责生成雪花算法实现类的实例,采用双重校验加锁的单例模式。- public final class KeyGeneratorFactory {
- /**
- * 使用shardingsphere提供的雪花算法实现
- */
- private static volatile SnowflakeShardingKeyGenerator keyGenerator = null;
- private KeyGeneratorFactory() {
- }
- /**
- * 单例模式
- *
- * @return
- */
- public static SnowflakeShardingKeyGenerator getInstance() {
- if (keyGenerator == null) {
- synchronized (KeyGeneratorFactory.class) {
- if (keyGenerator == null) {
- // 用ip地址当作机器id,机器范围0-1024
- Long workerId = Long.valueOf(IpUtil.getLocalIpAddress().replace(".", "")) % 1024;
- keyGenerator = new SnowflakeShardingKeyGenerator();
- Properties properties = new Properties();
- properties.setProperty("worker.id", workerId.toString());
- keyGenerator.setProperties(properties);
- }
- }
- }
- return keyGenerator;
- }
- }
复制代码 雪花算法是由1bit 不用 + 41bit时间戳+10bit工作机器id+12bit序列号组成的,所以为了防止不同节点生成的id重复需要设置机器id,机器id的范围是0-1024,这里是用IP地址转数字取模1024来计算机器id,存在很小概率的重复,也可以用redis来生成机器id(参考雪花算法ID重复问题的解决方案 )。
注意: 雪花算法坑其实挺多的,除了系统时间回溯会导致id重复,单节点并发过高也会导致重复(序列位只有12位代表1ms内最多支持4096个并发)。
查看源码可知自定义主键生成器是通过SPI实现的,实现ShardingKeyGenerator接口即可。- package org.apache.shardingsphere.spi.keygen;
- import org.apache.shardingsphere.spi.TypeBasedSPI;
- /**
- * Key generator.
- */
- public interface ShardingKeyGenerator extends TypeBasedSPI {
-
- /**
- * Generate key.
- *
- * @return generated key
- */
- Comparable<?> generateKey();
- }
复制代码
- 自定义主键生成器DistributedKeyGenerator
- /**
- * @Author: Ship
- * @Description: 分布式id生成器,雪花算法实现
- * @Date: Created in 2023/6/8
- */
- public class DistributedKeyGenerator implements ShardingKeyGenerator {
- @Override
- public Comparable<?> generateKey() {
- return KeyGeneratorFactory.getInstance().generateKey();
- }
- @Override
- public String getType() {
- return "DISTRIBUTED";
- }
- @Override
- public Properties getProperties() {
- return null;
- }
- @Override
- public void setProperties(Properties properties) {
- }
- }
复制代码
- 创建META-INF/services文件夹,然后在文件夹下创建org.apache.shardingsphere.spi.keygen.ShardingKeyGenerator文件,内容如下:
- cn.sp.sharding.key.DistributedKeyGenerator
复制代码 3.4 遗留问题
Spring Boot会在项目启动时执行一条sql语句检查数据源是否可用,因为ShardingDataSource只是对真实数据源进行了封装,没有完全实现Datasouce接口规范,所以会在启动时报错DataSource health check failed,为此需要重写数据源健康检查的逻辑。
创建DataSourceHealthConfig类继承DataSourceHealthContributorAutoConfiguration,然后重写createIndicator方法来重新设置校验sql语句。- /**
- * @Author: Ship
- * @Description:
- * @Date: Created in 2023/6/7
- */
- public class DataSourceHealthConfig extends DataSourceHealthContributorAutoConfiguration {
- private static String validQuery = "SELECT 1";
- public DataSourceHealthConfig(Map<String, DataSource> dataSources, ObjectProvider<DataSourcePoolMetadataProvider> metadataProviders) {
- super(dataSources, metadataProviders);
- }
- @Override
- protected AbstractHealthIndicator createIndicator(DataSource source) {
- DataSourceHealthIndicator healthIndicator = (DataSourceHealthIndicator) super.createIndicator(source);
- if (StringUtils.hasText(validQuery)) {
- healthIndicator.setQuery(validQuery);
- }
- return healthIndicator;
- }
- }
复制代码 最后使用@Import注解来注入- @AutoConfigureBefore(name = CommonConstants.MYBATIS_PLUS_CONFIG_CLASS)
- @Configuration
- @EnableConfigurationProperties(value = {ShardingRuleConfigurationProperties.class, ConfigMapConfigurationProperties.class})
- @Import(DataSourceHealthConfig.class)
- public class ShardingAutoConfig implements EnvironmentAware {
复制代码 四、测试
假设有个订单表数据量很大了需要分表,为了方便水平扩展,根据订单的创建时间分表,分表规则如下:- t_order_${创建时间所在年}_${创建时间所在季度}
复制代码 订单表结构如下- CREATE TABLE `t_order_2022_3` (
- `id` bigint(20) unsigned NOT NULL COMMENT '主键',
- `order_code` varchar(32) DEFAULT NULL COMMENT '订单号',
- `create_time` bigint(20) NOT NULL COMMENT '创建时间',
- PRIMARY KEY (`id`)
- ) ENGINE=InnoDB DEFAULT CHARSET=utf8;
复制代码
- 创建数据库my_springboot,并创建8张订单表t_order_2022_1至t_order_2023_4

- 创建SpringBoot项目ship-sharding-example,并添加mybatis等相关依赖
- <dependency>
- <groupId>org.mybatis.spring.boot</groupId>
- <artifactId>mybatis-spring-boot-starter</artifactId>
- <version>${mybatis.version}</version>
- </dependency>
- <dependency>
- <groupId>com.baomidou</groupId>
- <artifactId>mybatis-plus-boot-starter</artifactId>
- <version>3.0.1</version>
- <exclusions>
- <exclusion>
- <groupId>org.mybatis</groupId>
- <artifactId>mybatis</artifactId>
- </exclusion>
- </exclusions>
- </dependency>
-
- <dependency>
- <groupId>com.alibaba</groupId>
- <artifactId>druid-spring-boot-starter</artifactId>
- <version>${druid.version}</version>
- </dependency>
- <dependency>
- <groupId>cn.sp</groupId>
- <artifactId>ship-sharding-spring-boot-starter</artifactId>
- <version>1.0-SNAPSHOT</version>
- </dependency>
- <dependency>
- <groupId>mysql</groupId>
- <artifactId>mysql-connector-java</artifactId>
- </dependency>
复制代码
- 创建订单实体Order和OrderMapper,代码比较简单省略
- 自定义分表算法需要实现PreciseShardingAlgorithm和RangeShardingAlgorithm接口的方法,它俩区别如下
接口描述PreciseShardingAlgorithm定义等值查询条件下的分表算法RangeShardingAlgorithm定义范围查询条件下的分表算法创建算法类MyTableShardingAlgorithm- /**
- * @Author: Ship
- * @Description:
- * @Date: Created in 2023/6/8
- */
- @Slf4j
- public class MyTableShardingAlgorithm implements PreciseShardingAlgorithm<Long>, RangeShardingAlgorithm<Long> {
- private static final String TABLE_NAME_PREFIX = "t_order_";
- @Override
- public String doSharding(Collection<String> availableTableNames, PreciseShardingValue<Long> preciseShardingValue) {
- Long createTime = preciseShardingValue.getValue();
- if (createTime == null) {
- throw new ShipShardingException("创建时间不能为空!");
- }
- LocalDate localDate = DateUtils.longToLocalDate(createTime);
- final String year = localDate.getYear() + "";
- Integer quarter = DateUtils.getQuarter(localDate);
- for (String tableName : availableTableNames) {
- String dateStr = tableName.replace(TABLE_NAME_PREFIX, "");
- String[] dateArr = dateStr.split("_");
- if (dateArr[0].equals(year) && dateArr[1].equals(quarter.toString())) {
- return tableName;
- }
- }
- log.error("分表算法对应的表不存在!");
- throw new ShipShardingException("分表算法对应的表不存在!");
- }
- @Override
- public Collection<String> doSharding(Collection<String> availableTableNames, RangeShardingValue<Long> rangeShardingValue) {
- //获取查询条件中范围值
- Range<Long> valueRange = rangeShardingValue.getValueRange();
- // 上限值
- Long upperEndpoint = valueRange.upperEndpoint();
- // 下限值
- Long lowerEndpoint = valueRange.lowerEndpoint();
- List<String> tableNames = Lists.newArrayList();
- for (String tableName : availableTableNames) {
- String dateStr = tableName.replace(MyTableShardingAlgorithm.TABLE_NAME_PREFIX, "");
- String[] dateArr = dateStr.split("_");
- String year = dateArr[0];
- String quarter = dateArr[1];
- Long[] minAndMaxTime = DateUtils.getMinAndMaxTime(year, quarter);
- Long minTime = minAndMaxTime[0];
- Long maxTime = minAndMaxTime[1];
- if (valueRange.hasLowerBound() && valueRange.hasUpperBound()) {
- // between and
- if (minTime.compareTo(lowerEndpoint) <= 0 && upperEndpoint.compareTo(maxTime) <= 0) {
- tableNames.add(tableName);
- }
- } else if (valueRange.hasLowerBound() && !valueRange.hasUpperBound()) {
- if (maxTime.compareTo(lowerEndpoint) > 0) {
- tableNames.add(tableName);
- }
- } else {
- if (upperEndpoint.compareTo(minTime) > 0) {
- tableNames.add(tableName);
- }
- }
- }
- if (tableNames.size() == 0) {
- log.error("分表算法对应的表不存在!");
- throw new ShipShardingException("分表算法对应的表不存在!");
- }
- return tableNames;
- }
- }
复制代码
- 在application.yaml上添加数据库配置和分表配置
- spring:
- application:
- name: ship-sharding-example
- mybatis-plus:
- base-package: cn.sp.sharding.dao
- mapper-locations: classpath*:/mapper/*Mapper.xml
- configuration:
- #开启自动驼峰命名规则(camel case)映射
- map-underscore-to-camel-case: true
- #延迟加载,需要和lazy-loading-enabled一起使用
- aggressive-lazy-loading: true
- lazy-loading-enabled: true
- #关闭一级缓存
- local-cache-scope: statement
- #关闭二级级缓存
- cache-enabled: false
- ship:
- sharding:
- jdbc:
- datasource:
- names: ds0
- ds0:
- driver-class-name: com.mysql.cj.jdbc.Driver
- type: com.alibaba.druid.pool.DruidDataSource
- url: jdbc:mysql://127.0.0.1:3306/my_springboot?autoReconnect=true&useUnicode=true&characterEncoding=UTF-8&allowMultiQueries=true&useSSL=false
- username: root
- password: 1234
- initial-size: 5
- minIdle: 5
- maxActive: 20
- maxWait: 60000
- timeBetweenEvictionRunsMillis: 60000
- minEvictableIdleTimeMillis: 300000
- validationQuery: SELECT 1 FROM DUAL
- testWhileIdle: true
- testOnBorrow: false
- testOnReturn: false
- poolPreparedStatements: true
- maxPoolPreparedStatementPerConnectionSize: 20
- useGlobalDataSourceStat: true
- connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=2000;druid.mysql.usePingMethod=false
- config:
- binding-tables: t_order
- tables:
- t_order:
- actual-data-nodes: ds0.t_order_${2022..2023}_${1..4}
- # 配置主键生成策略
- key-generator:
- type: DISTRIBUTED
- column: id
- table-strategy:
- standard:
- sharding-column: create_time
- # 配置分表算法
- precise-algorithm-class-name: cn.sp.sharding.algorithm.MyTableShardingAlgorithm
- range-algorithm-class-name: cn.sp.sharding.algorithm.MyTableShardingAlgorithm
复制代码
- 现在可以进行测试了,首先写一个单元测试测试数据插入情况。
- @Test
- public void testInsert() {
- Order order = new Order();
- order.setOrderCode("OC001");
- order.setCreateTime(System.currentTimeMillis());
- orderMapper.insert(order);
- }
复制代码 运行testInsert()方法,打开t_order_2023_2表发现已经有了一条订单数据

并且该数据的create_time是1686383781371,转换为时间为2023-06-10 15:56:21,刚好对应2023年第二季度,说明数据正确的路由到了对应的表里。
然后测试下数据查询情况- @Test
- public void testQuery(){
- QueryWrapper<Order> wrapper = new QueryWrapper<>();
- wrapper.lambda().eq(Order::getOrderCode,"OC001");
- List<Order> orders = orderMapper.selectList(wrapper);
- System.out.println(JSONUtil.toJsonStr(orders));
- }
复制代码 运行testQuery()方法后可以在控制台看到输出了订单报文,说明查询也没问题。- [{"id":1667440550397132802,"orderCode":"OC001","createTime":1686383781371}]
复制代码 五、总结
本文代码已经上传到github,后续会把ship-sharding-spring-boot-starter上传到maven中央仓库方便使用,如果觉得对你有用的话希望可以点个赞让更多人看到
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |