先容
蜂群优化算法(Bee Algorithm, BA)及其变种主要模拟蜜蜂的觅食行为,以办理复杂的优化问题。这类算法通过蜜蜂之间的信息交换和协作来探索解空间,探求全局最优解。主要应用于参数优化,结构优化,机器学习,数据挖掘等各个领域。
本文示例
本文将应用于数据挖掘,来办理聚类问题
代码
bee_algorithm_clustering
- function bee_algorithm_clustering(data, num_clusters, num_bees, num_iterations, elite_bees, selected_bees, patch_size)
- % data: 输入的数据集 (rows: samples, columns: features)
- % num_clusters: 聚类数
- % num_bees: 总蜜蜂数量
- % num_iterations: 最大迭代次数
- % elite_bees: 精英蜜蜂数量
- % selected_bees: 选定蜜蜂数量
- % patch_size: 搜索邻域大小
- % 初始化蜜蜂群
- [num_samples, num_features] = size(data);
- bees = initialize_bees(num_bees, num_clusters, num_features);
-
- % 计算每只蜜蜂的适应度
- fitness = evaluate_bees(bees, data);
-
- for iter = 1:num_iterations
- % 排序蜜蜂根据适应度
- [fitness, idx] = sort(fitness);
- bees = bees(idx, :);
-
- % 搜索精英蜜蜂邻域
- for i = 1:elite_bees
- new_bees = local_search(bees(i, :), patch_size, num_clusters, num_features);
- new_fitness = evaluate_bees(new_bees, data);
-
- % 选择适应度更好的蜜蜂
- [best_new_fitness, best_idx] = min(new_fitness);
- if best_new_fitness < fitness(i)
- bees(i, :) = new_bees(best_idx, :);
- fitness(i) = best_new_fitness;
- end
- end
-
- % 搜索选定蜜蜂邻域
- for i = (elite_bees+1):selected_bees
- new_bees = local_search(bees(i, :), patch_size, num_clusters, num_features);
- new_fitness = evaluate_bees(new_bees, data);
-
- % 选择适应度更好的蜜蜂
- [best_new_fitness, best_idx] = min(new_fitness);
- if best_new_fitness < fitness(i)
- bees(i, :) = new_bees(best_idx, :);
- fitness(i) = best_new_fitness;
- end
- end
-
- % 更新其余蜜蜂位置
- for i = (selected_bees+1):num_bees
- bees(i, :) = initialize_bees(1, num_clusters, num_features);
- fitness(i) = evaluate_bees(bees(i, :), data);
- end
-
- % 输出当前最优适应度
- disp(['Iteration ', num2str(iter), ': Best Fitness = ', num2str(fitness(1))]);
- end
-
- % 输出最优聚类中心
- best_bee = reshape(bees(1, :), num_clusters, num_features);
- disp('Best Cluster Centers:');
- disp(best_bee);
-
- % 绘制聚类结果
- distances = pdist2(data, best_bee);
- [~, assignments] = min(distances, [], 2);
- figure;
- hold on;
- colors = lines(num_clusters);
- for k = 1:num_clusters
- scatter(data(assignments == k, 1), data(assignments == k, 2), 36, colors(k, :), 'filled');
- scatter(best_bee(k, 1), best_bee(k, 2), 100, colors(k, :), 'x', 'LineWidth', 2);
- end
- title('聚类结果');
- xlabel('Feature 1');
- ylabel('Feature 2');
- hold off;
- end
- function bees = initialize_bees(num_bees, num_clusters, num_features)
- % 随机初始化蜜蜂位置
- bees = rand(num_bees, num_clusters * num_features);
- end
- function fitness = evaluate_bees(bees, data)
- % 评估每只蜜蜂的适应度 (SSE)
- [num_bees, ~] = size(bees);
- [num_samples, ~] = size(data);
- num_clusters = size(bees, 2) / size(data, 2);
- fitness = zeros(num_bees, 1);
-
- for i = 1:num_bees
- centers = reshape(bees(i, :), num_clusters, size(data, 2));
- distances = pdist2(data, centers);
- [~, assignments] = min(distances, [], 2);
- fitness(i) = sum(sum((data - centers(assignments, :)).^2));
- end
- end
- function new_bees = local_search(bee, patch_size, num_clusters, num_features)
- % 局部搜索生成新蜜蜂
- new_bees = repmat(bee, patch_size, 1);
- perturbations = randn(patch_size, num_clusters * num_features) * 0.1;
- new_bees = new_bees + perturbations;
- end
复制代码 说明
bee_algorithm_clustering 函数:该函数是蜂群优化算法的主函数,用于执行聚类使命。
data:输入的数据集。
num_clusters:要找到的聚类中心的数量。
num_bees:蜜蜂总数。
num_iterations:最大迭代次数。
elite_bees:精英蜜蜂的数量。
selected_bees:选定蜜蜂的数量。
patch_size:搜刮邻域的大小。
初始化蜜蜂群:利用随机位置初始化蜜蜂
评估适应度:利用均方偏差(SSE)评估每只蜜蜂的适应度
局部搜刮:对精英蜜蜂和选定蜜蜂进行局部搜刮,天生新的蜜蜂并评估其适应度
更新蜜蜂位置:根据适应度更新蜜蜂的位置
输出结果:输出最佳聚类中心
利用以下代码天生数据集,然后生存名为run_bee_algorithm_clustering,运行
- % 生成数据集
- rng(1); % 设置随机种子以便重复实验
- num_samples_per_cluster = 50;
- cluster1 = bsxfun(@plus, randn(num_samples_per_cluster, 2), [2, 2]);
- cluster2 = bsxfun(@plus, randn(num_samples_per_cluster, 2), [-2, -2]);
- cluster3 = bsxfun(@plus, randn(num_samples_per_cluster, 2), [2, -2]);
- data = [cluster1; cluster2; cluster3];
- % 绘制数据集
- figure;
- scatter(data(:, 1), data(:, 2), 'filled');
- title('原始数据集');
- xlabel('Feature 1');
- ylabel('Feature 2');
- % 参数设置
- num_clusters = 3;
- num_bees = 50;
- num_iterations = 100;
- elite_bees = 5;
- selected_bees = 15;
- patch_size = 10;
- % 运行蜂群优化算法进行聚类
- bee_algorithm_clustering(data, num_clusters, num_bees, num_iterations, elite_bees, selected_bees, patch_size);
复制代码 说明
天生数据集:天生一个包含三类数据点的二维数据集
结果
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |