本文将具体先容Flink-CDC如何全量及增量采集Sqlserver数据源,准备适配Sqlserver数据源的小伙伴们可以参考本文,盼望本文能给你带来肯定的资助。
一、Sqlserver的安装及开启事务日志
如果没有Sqlserver情况,但你又想学习这块的内容,那你只能自己动手通过docker安装一个 myself sqlserver来用作学习,当然,如果你有现成情况,那就查抄一下Sqlserver是否开启了代理(sqlagent.enabled)服务和CDC功能。
1.1 docker拉取镜像
看Github上写Flink-CDC 现在支持的Sqlserver版本为2012, 2014, 2016, 2017, 2019,但我想全部拉到最新(究竟证明,2022-latest 和latest是一样的,由于imagId都是一致的,且在后续测试也是没有问题的),以是我在docker上拉取镜像时,直接采用如下命令:
- docker pull mcr.microsoft.com/mssql/server:latest
复制代码 1.2 运行Sqlserver并设置代理
标准启动模式,没什么好说的,主要设置一下暗码(暗码要求比力严格,建议直接在网上搜个随机暗码生成器来搞一下)。
- docker run -e 'ACCEPT_EULA=Y' -e 'SA_PASSWORD=${your_password}' \
- -p 1433:1433 --name sqlserver \
- -d mcr.microsoft.com/mssql/server:latest
复制代码 设置代理sqlagent.enabled,代理设置完成后,需要重启Sqlserver,由于我们是docker安装的,直接用docker restart sqlserver就行了。
- [root@hdp-01 ~]# docker exec -it --user root sqlserver bash
- root@0274812d0c10:/# /opt/mssql/bin/mssql-conf set sqlagent.enabled true
- SQL Server needs to be restarted in order to apply this setting. Please run
- 'systemctl restart mssql-server.service'.
- root@0274812d0c10:/# exit
- exit
- [root@hdp-01 ~]# docker restart sqlserver
- sqlserver
复制代码 1.3 启用CDC功能
按照如下步调执行命令,如果看到is_cdc_enabled = 1,则说明当前数据库
- root@0274812d0c10:/# /opt/mssql-tools/bin/sqlcmd -S localhost -U SA -P "${your_password}"
- 1> create databases test;
- 2> go
- 1> use test;
- 2> go
- Changed database context to 'test'.
- 1> EXEC sys.sp_cdc_enable_db;
- 2> go
- 1> SELECT is_cdc_enabled FROM sys.databases WHERE name = 'test';
- 2> go
- is_cdc_enabled
- --------------
- 1
- (1 rows affected)
- 1> CREATE TABLE t_info (id int,order_date date,purchaser int,quantity int,product_id int,PRIMARY KEY ([id]))
- 2> go
- 1>
- 2>
- 3> EXEC sys.sp_cdc_enable_table
- 4> @source_schema = 'dbo',
- 5> @source_name = 't_info',
- 6> @role_name = 'cdc_role';
- 7> go
- Update mask evaluation will be disabled in net_changes_function because the CLR configuration option is disabled.
- Job 'cdc.zeus_capture' started successfully.
- Job 'cdc.zeus_cleanup' started successfully.
- 1> select * from t_info;
- 2> go
- id order_date purchaser quantity product_id
- ----------- ---------------- ----------- ----------- -----------
- (0 rows affected)
复制代码 1.4 查抄CDC是否正常开启
用客户端连接Sqlserver,检察test库下的INFORMATION_SCHEMA.TABLES中是否出现TABLE_SCHEMA = cdc的表,如果出现,说明已经乐成安装Sqlserver并启用了CDC。
- 1> use test;
- 2> go
- Changed database context to 'test'.
- 1> select * from INFORMATION_SCHEMA.TABLES;
- 2> go
复制代码- TABLE_CATALOG TABLE_SCHEMA TABLE_NAME TABLE_TYPE
- test dbo user_info BASE TABLE
- test dbo systranschemas BASE TABLE
- test cdc change_tables BASE TABLE
- test cdc ddl_history BASE TABLE
- test cdc lsn_time_mapping BASE TABLE
- test cdc captured_columns BASE TABLE
- test cdc index_columns BASE TABLE
- test dbo orders BASE TABLE
- test cdc dbo_orders_CT BASE TABLE
复制代码 二、具体实现
2.1 Flik-CDC采集SqlServer主程序
添加依靠包:
- <dependency>
- <groupId>com.ververica</groupId>
- <artifactId>flink-connector-sqlserver-cdc</artifactId>
- <version>3.0.0</version>
- </dependency>
复制代码 编写主函数:
- public static void main(String[] args) throws Exception {
- StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
- // 设置全局并行度
- env.setParallelism(1);
- // 设置时间语义为ProcessingTime
- env.getConfig().setAutoWatermarkInterval(0);
- // 每隔60s启动一个检查点
- env.enableCheckpointing(60000, CheckpointingMode.EXACTLY_ONCE);
- // checkpoint最小间隔
- env.getCheckpointConfig().setMinPauseBetweenCheckpoints(1000);
- // checkpoint超时时间
- env.getCheckpointConfig().setCheckpointTimeout(60000);
- // 同一时间只允许一个checkpoint
- // env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
- // Flink处理程序被cancel后,会保留Checkpoint数据
- // env.getCheckpointConfig().setExternalizedCheckpointCleanup(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
- SourceFunction<String> sqlServerSource = SqlServerSource.<String>builder()
- .hostname("localhost")
- .port(1433)
- .username("SA")
- .password("")
- .database("test")
- .tableList("dbo.t_info")
- .startupOptions(StartupOptions.initial())
- .debeziumProperties(getDebeziumProperties())
- .deserializer(new CustomerDeserializationSchemaSqlserver())
- .build();
- DataStreamSource<String> dataStreamSource = env.addSource(sqlServerSource, "_transaction_log_source");
- dataStreamSource.print().setParallelism(1);
- env.execute("sqlserver-cdc-test");
- }
-
-
- public static Properties getDebeziumProperties() {
- Properties properties = new Properties();
- properties.put("converters", "sqlserverDebeziumConverter");
- properties.put("sqlserverDebeziumConverter.type", "SqlserverDebeziumConverter");
- properties.put("sqlserverDebeziumConverter.database.type", "sqlserver");
- // 自定义格式,可选
- properties.put("sqlserverDebeziumConverter.format.datetime", "yyyy-MM-dd HH:mm:ss");
- properties.put("sqlserverDebeziumConverter.format.date", "yyyy-MM-dd");
- properties.put("sqlserverDebeziumConverter.format.time", "HH:mm:ss");
- return properties;
- }
复制代码 2.2 自界说Sqlserver反序列化格式:
Flink-CDC底层技能为debezium,它捕捉到Sqlserver数据变更(CRUD)的数据格式如下:
- #初始化
- Struct{after=Struct{id=1,order_date=2024-01-30,purchaser=1,quantity=100,product_id=1},source=Struct{version=1.9.7.Final,connector=sqlserver,name=sqlserver_transaction_log_source,ts_ms=1706574924473,snapshot=true,db=zeus,schema=dbo,table=orders,commit_lsn=0000002b:00002280:0003},op=r,ts_ms=1706603724432}
- #新增
- Struct{after=Struct{id=12,order_date=2024-01-11,purchaser=6,quantity=233,product_id=63},source=Struct{version=1.9.7.Final,connector=sqlserver,name=sqlserver_transaction_log_source,ts_ms=1706603786187,db=zeus,schema=dbo,table=orders,change_lsn=0000002b:00002480:0002,commit_lsn=0000002b:00002480:0003,event_serial_no=1},op=c,ts_ms=1706603788461}
- #更新
- Struct{before=Struct{id=12,order_date=2024-01-11,purchaser=6,quantity=233,product_id=63},after=Struct{id=12,order_date=2024-01-11,purchaser=8,quantity=233,product_id=63},source=Struct{version=1.9.7.Final,connector=sqlserver,name=sqlserver_transaction_log_source,ts_ms=1706603845603,db=zeus,schema=dbo,table=orders,change_lsn=0000002b:00002500:0002,commit_lsn=0000002b:00002500:0003,event_serial_no=2},op=u,ts_ms=1706603850134}
- #删除
- Struct{before=Struct{id=11,order_date=2024-01-11,purchaser=6,quantity=233,product_id=63},source=Struct{version=1.9.7.Final,connector=sqlserver,name=sqlserver_transaction_log_source,ts_ms=1706603973023,db=zeus,schema=dbo,table=orders,change_lsn=0000002b:000025e8:0002,commit_lsn=0000002b:000025e8:0005,event_serial_no=1},op=d,ts_ms=1706603973859}
复制代码 因此,可以根据自己需要自界说反序列化格式,将数据按照标准统一数据输出,下面是我自界说的格式,供各人参考:
- import com.alibaba.fastjson2.JSON;
- import com.alibaba.fastjson2.JSONObject;
- import com.alibaba.fastjson2.JSONWriter;
- import com.ververica.cdc.debezium.DebeziumDeserializationSchema;
- import io.debezium.data.Envelope;
- import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
- import org.apache.flink.api.common.typeinfo.TypeInformation;
- import org.apache.flink.util.Collector;
- import org.apache.kafka.connect.data.Field;
- import org.apache.kafka.connect.data.Schema;
- import org.apache.kafka.connect.data.Struct;
- import org.apache.kafka.connect.source.SourceRecord;
- import java.util.HashMap;
- import java.util.Map;
- public class CustomerDeserializationSchemaSqlserver implements DebeziumDeserializationSchema<String> {
- private static final long serialVersionUID = -1L;
- @Override
- public void deserialize(SourceRecord sourceRecord, Collector collector) {
- Map<String, Object> resultMap = new HashMap<>();
- String topic = sourceRecord.topic();
- String[] split = topic.split("[.]");
- String database = split[1];
- String table = split[2];
- resultMap.put("db", database);
- resultMap.put("tableName", table);
- //获取操作类型
- Envelope.Operation operation = Envelope.operationFor(sourceRecord);
- //获取数据本身
- Struct struct = (Struct) sourceRecord.value();
- Struct after = struct.getStruct("after");
- Struct before = struct.getStruct("before");
- String op = operation.name();
- resultMap.put("op", op);
- //新增,更新或者初始化
- if (op.equals(Envelope.Operation.CREATE.name()) || op.equals(Envelope.Operation.READ.name()) || op.equals(Envelope.Operation.UPDATE.name())) {
- JSONObject afterJson = new JSONObject();
- if (after != null) {
- Schema schema = after.schema();
- for (Field field : schema.fields()) {
- afterJson.put(field.name(), after.get(field.name()));
- }
- resultMap.put("after", afterJson);
- }
- }
- if (op.equals(Envelope.Operation.DELETE.name())) {
- JSONObject beforeJson = new JSONObject();
- if (before != null) {
- Schema schema = before.schema();
- for (Field field : schema.fields()) {
- beforeJson.put(field.name(), before.get(field.name()));
- }
- resultMap.put("before", beforeJson);
- }
- }
- collector.collect(JSON.toJSONString(resultMap, JSONWriter.Feature.FieldBased, JSONWriter.Feature.LargeObject));
- }
- @Override
- public TypeInformation<String> getProducedType() {
- return BasicTypeInfo.STRING_TYPE_INFO;
- }
- }
复制代码 2.3 自界说日期格式转换器
debezium会将日期转为5位数字,日期时间转为13位的数字,因此我们需要根据Sqlserver的日期类型转换成标准的时期或者时间格式。Sqlserver的日期类型主要包含以下几种:
字段类型快照类型(jdbc type)cdc类型(jdbc type)DATEjava.sql.Date(91)java.sql.Date(91)TIMEjava.sql.Timestamp(92)java.sql.Time(92)DATETIMEjava.sql.Timestamp(93)java.sql.Timestamp(93)DATETIME2java.sql.Timestamp(93)java.sql.Timestamp(93)DATETIMEOFFSETmicrosoft.sql.DateTimeOffset(-155)microsoft.sql.DateTimeOffset(-155)SMALLDATETIMEjava.sql.Timestamp(93)java.sql.Timestamp(93)- import io.debezium.spi.converter.CustomConverter;
- import io.debezium.spi.converter.RelationalColumn;
- import org.apache.kafka.connect.data.SchemaBuilder;
- import java.time.ZoneOffset;
- import java.time.format.DateTimeFormatter;
- import java.util.Properties;
- @Sl4j
- public class SqlserverDebeziumConverter implements CustomConverter<SchemaBuilder, RelationalColumn> {
- private static final String DATE_FORMAT = "yyyy-MM-dd";
- private static final String TIME_FORMAT = "HH:mm:ss";
- private static final String DATETIME_FORMAT = "yyyy-MM-dd HH:mm:ss";
- private DateTimeFormatter dateFormatter;
- private DateTimeFormatter timeFormatter;
- private DateTimeFormatter datetimeFormatter;
- private SchemaBuilder schemaBuilder;
- private String databaseType;
- private String schemaNamePrefix;
- @Override
- public void configure(Properties properties) {
- // 必填参数:database.type,只支持sqlserver
- this.databaseType = properties.getProperty("database.type");
- // 如果未设置,或者设置的不是mysql、sqlserver,则抛出异常。
- if (this.databaseType == null || !this.databaseType.equals("sqlserver"))) {
- throw new IllegalArgumentException("database.type 必须设置为'sqlserver'");
- }
- // 选填参数:format.date、format.time、format.datetime。获取时间格式化的格式
- String dateFormat = properties.getProperty("format.date", DATE_FORMAT);
- String timeFormat = properties.getProperty("format.time", TIME_FORMAT);
- String datetimeFormat = properties.getProperty("format.datetime", DATETIME_FORMAT);
- // 获取自身类的包名+数据库类型为默认schema.name
- String className = this.getClass().getName();
- // 查看是否设置schema.name.prefix
- this.schemaNamePrefix = properties.getProperty("schema.name.prefix", className + "." + this.databaseType);
- // 初始化时间格式化器
- dateFormatter = DateTimeFormatter.ofPattern(dateFormat);
- timeFormatter = DateTimeFormatter.ofPattern(timeFormat);
- datetimeFormatter = DateTimeFormatter.ofPattern(datetimeFormat);
- }
- // sqlserver的转换器
- public void registerSqlserverConverter(String columnType, ConverterRegistration<SchemaBuilder> converterRegistration) {
- String schemaName = this.schemaNamePrefix + "." + columnType.toLowerCase();
- schemaBuilder = SchemaBuilder.string().name(schemaName);
- switch (columnType) {
- case "DATE":
- converterRegistration.register(schemaBuilder, value -> {
- if (value == null) {
- return null;
- } else if (value instanceof java.sql.Date) {
- return dateFormatter.format(((java.sql.Date) value).toLocalDate());
- } else {
- return this.failConvert(value, schemaName);
- }
- });
- break;
- case "TIME":
- converterRegistration.register(schemaBuilder, value -> {
- if (value == null) {
- return null;
- } else if (value instanceof java.sql.Time) {
- return timeFormatter.format(((java.sql.Time) value).toLocalTime());
- } else if (value instanceof java.sql.Timestamp) {
- return timeFormatter.format(((java.sql.Timestamp) value).toLocalDateTime().toLocalTime());
- } else {
- return this.failConvert(value, schemaName);
- }
- });
- break;
- case "DATETIME":
- case "DATETIME2":
- case "SMALLDATETIME":
- case "DATETIMEOFFSET":
- converterRegistration.register(schemaBuilder, value -> {
- if (value == null) {
- return null;
- } else if (value instanceof java.sql.Timestamp) {
- return datetimeFormatter.format(((java.sql.Timestamp) value).toLocalDateTime());
- } else if (value instanceof microsoft.sql.DateTimeOffset) {
- microsoft.sql.DateTimeOffset dateTimeOffset = (microsoft.sql.DateTimeOffset) value;
- return datetimeFormatter.format(
- dateTimeOffset.getOffsetDateTime().withOffsetSameInstant(ZoneOffset.UTC).toLocalDateTime());
- } else {
- return this.failConvert(value, schemaName);
- }
- });
- break;
- default:
- schemaBuilder = null;
- break;
- }
- }
- @Override
- public void converterFor(RelationalColumn relationalColumn, ConverterRegistration<SchemaBuilder> converterRegistration) {
- // 获取字段类型
- String columnType = relationalColumn.typeName().toUpperCase();
- // 根据数据库类型调用不同的转换器
- if (this.databaseType.equals("sqlserver")) {
- this.registerSqlserverConverter(columnType, converterRegistration);
- } else {
- log.warn("不支持的数据库类型: {}", this.databaseType);
- schemaBuilder = null;
- }
- }
- private String getClassName(Object value) {
- if (value == null) {
- return null;
- }
- return value.getClass().getName();
- }
- // 类型转换失败时的日志打印
- private String failConvert(Object value, String type) {
- String valueClass = this.getClassName(value);
- String valueString = valueClass == null ? null : value.toString();
- return valueString;
- }
- }
复制代码 三、总计
现在Fink-CDC对这种增量采集传统数据库的技能已经封装的很好了,并且官方也给了具体的操作教程,但如果想要深入的学习一项技能,个人觉得照旧要重新到尾操作一遍,一方面可以或许快速的提升自己,另一方面发现问题时,也能从不同的角度来思考办理方案,盼望本篇文章可以或许给各人带来一点资助。
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |