1 综述
1.1 目的
Bloom Filter Join,或者说Row-level Runtime Filtering(还额外有一条Semi-Join分支),是Spark 3.3对运行时过滤的一个最新补充
之前运行时过滤主要有两个:动态分区裁剪DPP(开源实现)、动态文件裁剪DFP(Databricks实现),两者都能有效淘汰数据源层面的Scan IO
Bloom Filter Join的主要优化点是在shuffle层,通过在join shuffle前对表进行过滤从而提高运行效率
1.2 场景
- 普通的shuffle join
- Broadcast join并且子布局中存在shuffle
1.3 底子过程
将存在过滤条件的小表端称为Filter Creation Side,另一层称为Filter Application Side
对于如下的SQL:SELECT * FROM R JOIN S ON R.r_sk = S.s_sk where S.x = 5
起首Creation端进行bloomFilter创建,简朴来说就是对小表创建一个bloomFilter的过滤数据集合
- SELECT BloomFilterAggregate(XxHash64(S.s_sk), n_items, n_bits)
- FROM S where S.x = 5
复制代码 之后Application端进行重写(实际是整个查询重写),就是把小表的bloomFilter数据集合拿来对大表的数据进行过滤
根据上面的场景图看,其实小表Creation端在整个SQL树上并没有变革,只改变了大表端的树布局
- SELECT *
- FROM R JOIN S ON R.r_sk = S.s_sk
- WHERE S.x=5 AND BloomFilterMightContain(
- (
- SELECT BloomFilterAggregate(XxHash64(S.s_sk), n_items, n_bits) bloom_filter
- FROM S where S.x = 5 ), -- Bloom filter creation
- XxHash64(R.r_sk)) -- Bloom filter application
复制代码 1.4 触发条件
设计文档中写的触发条件
- 小表在broadcast join当中(存疑)
- 小表有过滤器
- 小表是Scan (-> Project) -> Filter的建档形式,否则依赖流增加可能延长查询时间
- 小表是确定性的
- 大表端有shuffle,小表可以通过shuffl传送bloomFilter结果
- join的列上没有应用DPP
2 InjectRuntimeFilter
InjectRuntimeFilter是Spark源码中对应的优化器类,只执行一次(FixedPoint(1)和Once的差异是Once逼迫幂等)
- Batch("InjectRuntimeFilter", FixedPoint(1),
- InjectRuntimeFilter) :+
复制代码 apply中定义了规则的团体流程,前面是两个条件判定
- // 相关子查询不支持,相关子查询的子查询结果依赖于主查询,不能应用
- case s: Subquery if s.correlated => plan
- // 相关的配置开关是否开启
- case _ if !conf.runtimeFilterSemiJoinReductionEnabled &&
- !conf.runtimeFilterBloomFilterEnabled => plan
- case _ =>
- // 应用优化规则,尝试注入运行时过滤器
- val newPlan = tryInjectRuntimeFilter(plan)
- // semi join配置未开或者规则应用后无变化,不处理
- if (conf.runtimeFilterSemiJoinReductionEnabled && !plan.fastEquals(newPlan)) {
- // 子查询重写成semi/anti join
- RewritePredicateSubquery(newPlan)
- } else {
- newPlan
- }
复制代码 相关的设置为,默认bloomFilter开启了,Semi join关闭的
- val RUNTIME_FILTER_SEMI_JOIN_REDUCTION_ENABLED =
- buildConf("spark.sql.optimizer.runtimeFilter.semiJoinReduction.enabled")
- .doc("When true and if one side of a shuffle join has a selective predicate, we attempt " +
- "to insert a semi join in the other side to reduce the amount of shuffle data.")
- .version("3.3.0")
- .booleanConf
- .createWithDefault(false)
-
- val RUNTIME_BLOOM_FILTER_ENABLED =
- buildConf("spark.sql.optimizer.runtime.bloomFilter.enabled")
- .doc("When true and if one side of a shuffle join has a selective predicate, we attempt " +
- "to insert a bloom filter in the other side to reduce the amount of shuffle data.")
- .version("3.3.0")
- .booleanConf
- .createWithDefault(true)
复制代码 2.1 tryInjectRuntimeFilter
tryInjectRuntimeFilter使用焦点的处置惩罚流程,尝试应用Runtime Filter,团体代码如下
- private def tryInjectRuntimeFilter(plan: LogicalPlan): LogicalPlan = {
- var filterCounter = 0
- val numFilterThreshold = conf.getConf(SQLConf.RUNTIME_FILTER_NUMBER_THRESHOLD)
- plan transformUp {
- case join @ ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, _, _, left, right, hint) =>
- var newLeft = left
- var newRight = right
- (leftKeys, rightKeys).zipped.foreach((l, r) => {
- // Check if:
- // 1. There is already a DPP filter on the key
- // 2. There is already a runtime filter (Bloom filter or IN subquery) on the key
- // 3. The keys are simple cheap expressions
- if (filterCounter < numFilterThreshold &&
- !hasDynamicPruningSubquery(left, right, l, r) &&
- !hasRuntimeFilter(newLeft, newRight, l, r) &&
- isSimpleExpression(l) && isSimpleExpression(r)) {
- val oldLeft = newLeft
- val oldRight = newRight
- if (canPruneLeft(joinType) && filteringHasBenefit(left, right, l, hint)) {
- newLeft = injectFilter(l, newLeft, r, right)
- }
- // Did we actually inject on the left? If not, try on the right
- if (newLeft.fastEquals(oldLeft) && canPruneRight(joinType) &&
- filteringHasBenefit(right, left, r, hint)) {
- newRight = injectFilter(r, newRight, l, left)
- }
- if (!newLeft.fastEquals(oldLeft) || !newRight.fastEquals(oldRight)) {
- filterCounter = filterCounter + 1
- }
- }
- })
- join.withNewChildren(Seq(newLeft, newRight))
- }
- }
复制代码 过程中有很多的条件判定,应用Runtime Filter的基本条件:
- 插入的Runtime Filter没凌驾阈值(默认10)
- 等值条件的Key上不能有DPP、Runtime Filter
- 等值条件的Key是一个简朴表达式(即没有套上UDF等)
之后根据条件,选择将Runtime Filter应用到左子树照旧右子树,条件为
- Join范例支持下推(好比RightOuter只能用于左子树)
- Application端支持通过joins、aggregates、windows下推过滤条件
- Creation端有过滤条件
- 当前join是shuffle join或者是一个子布局中包罗shuffle的broadcast join
- Application端的扫描数据大于阈值(默认10G)
提到的两个阈值的设置项
- val RUNTIME_FILTER_NUMBER_THRESHOLD =
- buildConf("spark.sql.optimizer.runtimeFilter.number.threshold")
- .doc("The total number of injected runtime filters (non-DPP) for a single " +
- "query. This is to prevent driver OOMs with too many Bloom filters.")
- .version("3.3.0")
- .intConf
- .checkValue(threshold => threshold >= 0, "The threshold should be >= 0")
- .createWithDefault(10)
- val RUNTIME_BLOOM_FILTER_APPLICATION_SIDE_SCAN_SIZE_THRESHOLD =
- buildConf("spark.sql.optimizer.runtime.bloomFilter.applicationSideScanSizeThreshold")
- .doc("Byte size threshold of the Bloom filter application side plan's aggregated scan " +
- "size. Aggregated scan byte size of the Bloom filter application side needs to be over " +
- "this value to inject a bloom filter.")
- .version("3.3.0")
- .bytesConf(ByteUnit.BYTE)
- .createWithDefaultString("10GB")
复制代码 2.2 injectFilter
injectFilter是焦点进行Runtime Filter规则应用的地方,在此处,bloomFilter和Semi Join是互斥的,只能有一个执行
- if (conf.runtimeFilterBloomFilterEnabled) {
- injectBloomFilter(
- filterApplicationSideExp,
- filterApplicationSidePlan,
- filterCreationSideExp,
- filterCreationSidePlan
- )
- } else {
- injectInSubqueryFilter(
- filterApplicationSideExp,
- filterApplicationSidePlan,
- filterCreationSideExp,
- filterCreationSidePlan
- )
复制代码 2.3 injectBloomFilter
2.3.1 执行条件
起首进行一个判定,在Creation端的数据不能大于阈值(Creation端数据量大会导致bloomFilter的误判率高,最终过滤效果差)
- // Skip if the filter creation side is too big
- if (filterCreationSidePlan.stats.sizeInBytes > conf.runtimeFilterCreationSideThreshold) {
- return filterApplicationSidePlan
- }
复制代码 阈值设置默认10M
- val RUNTIME_BLOOM_FILTER_CREATION_SIDE_THRESHOLD =
- buildConf("spark.sql.optimizer.runtime.bloomFilter.creationSideThreshold")
- .doc("Size threshold of the bloom filter creation side plan. Estimated size needs to be " +
- "under this value to try to inject bloom filter.")
- .version("3.3.0")
- .bytesConf(ByteUnit.BYTE)
- .createWithDefaultString("10MB")
复制代码 Creation端的数据是一个预估数据,是LogicalPlan中的属性LogicalPlanStats获取的,分是否开启CBO,详细获取方式待研究
- def stats: Statistics = statsCache.getOrElse {
- if (conf.cboEnabled) {
- statsCache = Option(BasicStatsPlanVisitor.visit(self))
- } else {
- statsCache = Option(SizeInBytesOnlyStatsPlanVisitor.visit(self))
- }
- statsCache.get
- }
复制代码 2.3.2 创建Creation端的聚合
就是创建一个bloomFilter的聚合函数BloomFilterAggregate,是AggregateFunction的子类,属于Expression。根据统计信息中是否存在行数,会传入不同的参数
- val rowCount = filterCreationSidePlan.stats.rowCount
- val bloomFilterAgg =
- if (rowCount.isDefined && rowCount.get.longValue > 0L) {
- new BloomFilterAggregate(new XxHash64(Seq(filterCreationSideExp)), rowCount.get.longValue)
- } else {
- new BloomFilterAggregate(new XxHash64(Seq(filterCreationSideExp)))
- }
复制代码 2.3.3 创建Application端的过滤条件
根据1.3中的形貌,此处就是把上节中Creation端创建的bloomFilter过滤条件构建成Application端的条件
Alias就是一个别名的效果;ColumnPruning就是进行列裁剪,后续不必要的列不读取;ConstantFolding就是进行常量折叠;ScalarSubquery是标量子查询,标量子查询的查询结果是一行一列的值(单一值)
BloomFilterMightContain就是一个内部标量函数,查抄数据是否由bloomFilter包罗,继承自Predicate,返回boolean值
- val alias = Alias(bloomFilterAgg.toAggregateExpression(), "bloomFilter")()
- val aggregate =
- ConstantFolding(ColumnPruning(Aggregate(Nil, Seq(alias), filterCreationSidePlan)))
- val bloomFilterSubquery = ScalarSubquery(aggregate, Nil)
- val filter = BloomFilterMightContain(bloomFilterSubquery,
- new XxHash64(Seq(filterApplicationSideExp)))
复制代码 最终结果是在原Application端的计划树上加一个filter,如下就是最终的返回结果
- Filter(filter, filterApplicationSidePlan)
复制代码 2.4 injectInSubqueryFilter
injectInSubqueryFilter团体流程与injectBloomFilter差不多,差异应该是在Application端天生的过滤条件变成in
- val actualFilterKeyExpr = mayWrapWithHash(filterCreationSideExp)
- val alias = Alias(actualFilterKeyExpr, actualFilterKeyExpr.toString)()
- val aggregate =
- ColumnPruning(Aggregate(Seq(filterCreationSideExp), Seq(alias), filterCreationSidePlan))
- if (!canBroadcastBySize(aggregate, conf)) {
- // Skip the InSubquery filter if the size of `aggregate` is beyond broadcast join threshold,
- // i.e., the semi-join will be a shuffled join, which is not worthwhile.
- return filterApplicationSidePlan
- }
- val filter = InSubquery(Seq(mayWrapWithHash(filterApplicationSideExp)),
- ListQuery(aggregate, childOutputs = aggregate.output))
- Filter(filter, filterApplicationSidePlan)
复制代码 这里有一个小优化就是mayWrapWithHash,当数据范例的大小凌驾int时,就是把数据转为hash
- // Wraps `expr` with a hash function if its byte size is larger than an integer.
- private def mayWrapWithHash(expr: Expression): Expression = {
- if (expr.dataType.defaultSize > IntegerType.defaultSize) {
- new Murmur3Hash(Seq(expr))
- } else {
- expr
- }
- }
复制代码 3 BloomFilterAggregate
类有三个焦点参数:
- child:子表达式,就是InjectRuntimeFilter里传的XxHash64,目前看起来数据先经过XxHash64处置惩罚成long再放入BloomFilter
- estimatedNumItemsExpression:估计的数据量,假如InjectRuntimeFilter没拿到统计信息,就用设置的默认值
- numBitsExpression:要使用的bit数
- case class BloomFilterAggregate(
- child: Expression,
- estimatedNumItemsExpression: Expression,
- numBitsExpression: Expression,
复制代码 estimatedNumItemsExpression和numBitsExpression对应的设置如下
- val RUNTIME_BLOOM_FILTER_EXPECTED_NUM_ITEMS =
- buildConf("spark.sql.optimizer.runtime.bloomFilter.expectedNumItems")
- .doc("The default number of expected items for the runtime bloomfilter")
- .version("3.3.0")
- .longConf
- .createWithDefault(1000000L)
-
- val RUNTIME_BLOOM_FILTER_NUM_BITS =
- buildConf("spark.sql.optimizer.runtime.bloomFilter.numBits")
- .doc("The default number of bits to use for the runtime bloom filter")
- .version("3.3.0")
- .longConf
- .createWithDefault(8388608L)
复制代码 BloomFilter用的是Spark本身实现的一个类BloomFilterImpl,BloomFilterAggregate的createAggregationBuffer接口中创建
- override def createAggregationBuffer(): BloomFilter = {
- BloomFilter.create(estimatedNumItems, numBits)
- }
复制代码 参数就是前面的estimatedNumItemsExpression和numBitsExpression,是懒加载的参数(应该在处置惩罚过程会被改变,所以实际跟前面的值之间还加了一层与默认值的比较赋值)
- // Mark as lazy so that `estimatedNumItems` is not evaluated during tree transformation.
- private lazy val estimatedNumItems: Long =
- Math.min(estimatedNumItemsExpression.eval().asInstanceOf[Number].longValue,
- SQLConf.get.getConf(RUNTIME_BLOOM_FILTER_MAX_NUM_ITEMS))
复制代码 处置惩罚数据的接口应该是update,把数据用XxHash64处置惩罚后到场BloomFilter
- override def update(buffer: BloomFilter, inputRow: InternalRow): BloomFilter = {
- val value = child.eval(inputRow)
- // Ignore null values.
- if (value == null) {
- return buffer
- }
- buffer.putLong(value.asInstanceOf[Long])
- buffer
- }
复制代码 对象BloomFilterAggregate有对应的序列化和反序列化接口
- object BloomFilterAggregate {
- final def serialize(obj: BloomFilter): Array[Byte] = {
- // BloomFilterImpl.writeTo() writes 2 integers (version number and num hash functions), hence
- // the +8
- val size = (obj.bitSize() / 8) + 8
- require(size <= Integer.MAX_VALUE, s"actual number of bits is too large $size")
- val out = new ByteArrayOutputStream(size.intValue())
- obj.writeTo(out)
- out.close()
- out.toByteArray
- }
- final def deserialize(bytes: Array[Byte]): BloomFilter = {
- val in = new ByteArrayInputStream(bytes)
- val bloomFilter = BloomFilter.readFrom(in)
- in.close()
- bloomFilter
- }
- }
复制代码 4 BloomFilterMightContain
有两个参数
- bloomFilterExpression:是上节BloomFilter的二进制数据
- valueExpression:应该跟上节的child同等,对输入数据做处置惩罚的表达式,XxHash64
- case class BloomFilterMightContain(
- bloomFilterExpression: Expression,
- valueExpression: Expression)
复制代码 bloomFilter通过反序列化获取
- // The bloom filter created from `bloomFilterExpression`.
- @transient private lazy val bloomFilter = {
- val bytes = bloomFilterExpression.eval().asInstanceOf[Array[Byte]]
- if (bytes == null) null else deserialize(bytes)
- }
复制代码 做数据判定的应该是eval,就是调用的BloomFilter的接口进行判定。eval应该就是Spark中Expression表达式的执行接口
- override def eval(input: InternalRow): Any = {
- if (bloomFilter == null) {
- null
- } else {
- val value = valueExpression.eval(input)
- if (value == null) null else bloomFilter.mightContainLong(value.asInstanceOf[Long])
- }
- }
复制代码 也有doGenCode接口用来天生代码
- override def doGenCode(ctx: CodegenContext, ev: ExprCode): ExprCode = {
- if (bloomFilter == null) {
- ev.copy(isNull = TrueLiteral, value = JavaCode.defaultLiteral(dataType))
- } else {
- val bf = ctx.addReferenceObj("bloomFilter", bloomFilter, classOf[BloomFilter].getName)
- val valueEval = valueExpression.genCode(ctx)
- ev.copy(code = code"""
- ${valueEval.code}
- boolean ${ev.isNull} = ${valueEval.isNull};
- ${CodeGenerator.javaType(dataType)} ${ev.value} = ${CodeGenerator.defaultValue(dataType)};
- if (!${ev.isNull}) {
- ${ev.value} = $bf.mightContainLong((Long)${valueEval.value});
- }""")
- }
- }
复制代码 5 计划变更
取Spark单位测试的样例(InjectRuntimeFilterSuite):select * from bf1 join bf2 on bf1.c1 = bf2.c2 where bf2.a2 = 62
- GlobalLimit 21
- +- LocalLimit 21
- +- Project [cast(a1#38430 as string) AS a1#38468, cast(b1#38431 as string) AS b1#38469, cast(c1#38432 as string) AS c1#38470, cast(d1#38433 as string) AS d1#38471, cast(e1#38434 as string) AS e1#38472, cast(f1#38435 as string) AS f1#38473, cast(a2#38436 as string) AS a2#38474, cast(b2#38437 as string) AS b2#38475, cast(c2#38438 as string) AS c2#38476, cast(d2#38439 as string) AS d2#38477, cast(e2#38440 as string) AS e2#38478, cast(f2#38441 as string) AS f2#38479]
- +- Join Inner, (c1#38432 = c2#38438)
- :- Filter isnotnull(c1#38432)
- : +- Relation spark_catalog.default.bf1[a1#38430,b1#38431,c1#38432,d1#38433,e1#38434,f1#38435] parquet
- +- Filter ((isnotnull(a2#38436) AND (a2#38436 = 62)) AND isnotnull(c2#38438))
- +- Relation spark_catalog.default.bf2[a2#38436,b2#38437,c2#38438,d2#38439,e2#38440,f2#38441] parquet
复制代码
- GlobalLimit 21
- +- LocalLimit 21
- +- Project [cast(a1#38430 as string) AS a1#38468, cast(b1#38431 as string) AS b1#38469, cast(c1#38432 as string) AS c1#38470, cast(d1#38433 as string) AS d1#38471, cast(e1#38434 as string) AS e1#38472, cast(f1#38435 as string) AS f1#38473, cast(a2#38436 as string) AS a2#38474, cast(b2#38437 as string) AS b2#38475, cast(c2#38438 as string) AS c2#38476, cast(d2#38439 as string) AS d2#38477, cast(e2#38440 as string) AS e2#38478, cast(f2#38441 as string) AS f2#38479]
- +- Join Inner, (c1#38432 = c2#38438)
- :- Filter might_contain(scalar-subquery#38494 [], xxhash64(c1#38432, 42))
- : : +- Aggregate [bloom_filter_agg(xxhash64(c2#38438, 42), 1000000, 8388608, 0, 0) AS bloomFilter#38493]
- : : +- Project [c2#38438]
- : : +- Filter ((isnotnull(a2#38436) AND (a2#38436 = 62)) AND isnotnull(c2#38438))
- : : +- Relation spark_catalog.default.bf2[a2#38436,b2#38437,c2#38438,d2#38439,e2#38440,f2#38441] parquet
- : +- Filter isnotnull(c1#38432)
- : +- Relation spark_catalog.default.bf1[a1#38430,b1#38431,c1#38432,d1#38433,e1#38434,f1#38435] parquet
- +- Filter ((isnotnull(a2#38436) AND (a2#38436 = 62)) AND isnotnull(c2#38438))
- +- Relation spark_catalog.default.bf2[a2#38436,b2#38437,c2#38438,d2#38439,e2#38440,f2#38441] parquet
复制代码 免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |