代码堆栈
会同步代码到 GitHub
https://github.com/turbo-duck/flink-demo
内容先容
上节我们已经实现了,对Kafka数据的消费和盘算,最终把结果输出到了控制台上。如下图:
Kafka In Docker
TestKafkaProducer
将数据写入到Kafka中的结果
FlinkConsumer
Flink消费Kafka的结果如下图,已经按照我们的需求进行盘算了。
这节内容
本节依然使用Flink对Kafka进行消费,但与上节差别的是(上节将结果输出到控制台上),本节将把Flink盘算的结果输出到Redis中进行生存(当然也可以存储到别的地方,这里以Redis为例)。
pom.xml
重点关注 flink-connector-redis_2.11 这个包。这是Redis相关的依赖。
- <?xml version="1.0" encoding="UTF-8"?>
- <project xmlns="http://maven.apache.org/POM/4.0.0"
- xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
- <modelVersion>4.0.0</modelVersion>
- <groupId>org.example</groupId>
- <artifactId>flink-demo-01</artifactId>
- <version>1.0-SNAPSHOT</version>
- <properties>
- <maven.compiler.source>8</maven.compiler.source>
- <maven.compiler.target>8</maven.compiler.target>
- <flink.version>1.13.2</flink.version>
- <scala.binary.version>2.12</scala.binary.version>
- </properties>
- <dependencies>
- <dependency>
- <groupId>org.apache.flink</groupId>
- <artifactId>flink-java</artifactId>
- <version>${flink.version}</version>
- </dependency>
- <dependency>
- <groupId>org.apache.flink</groupId>
- <artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
- <version>${flink.version}</version>
- </dependency>
- <dependency>
- <groupId>org.apache.flink</groupId>
- <artifactId>flink-clients_${scala.binary.version}</artifactId>
- <version>${flink.version}</version>
- </dependency>
- <dependency>
- <groupId>org.apache.flink</groupId>
- <artifactId>flink-connector-kafka_2.11</artifactId>
- <version>${flink.version}</version>
- </dependency>
- <dependency>
- <groupId>org.apache.kafka</groupId>
- <artifactId>kafka-clients</artifactId>
- <version>3.0.0</version>
- </dependency>
- <dependency>
- <groupId>org.apache.flink</groupId>
- <artifactId>flink-connector-redis_2.11</artifactId>
- <version>1.1.0</version>
- </dependency>
- </dependencies>
- </project>
复制代码 KafkaProducer.java
生产数据存入到Kafka这种
- package icu.wzk.demo05;
- import org.apache.kafka.clients.producer.KafkaProducer;
- import org.apache.kafka.clients.producer.Producer;
- import org.apache.kafka.clients.producer.ProducerRecord;
- import java.util.Properties;
- public class TestKafkaProducer {
- public static void main(String[] args) throws InterruptedException {
- Properties props = new Properties();
- props.put("bootstrap.servers", "0.0.0.0:9092");
- props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
- props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
- Producer<String, String> producer = new KafkaProducer<>(props);
- for (int i = 0; i < 500; i++) {
- String key = "key-" + i;
- String value = "value-" + i;
- ProducerRecord<String, String> record = new ProducerRecord<>("test", key, value);
- producer.send(record);
- System.out.println("send: " + key);
- Thread.sleep(200);
- }
- producer.close();
- }
- }
复制代码 StartApp
Flink消费Kafka,盘算后写入到Redis中。
FlinkJedisPoolConfig
毗连池的配置
MyRedisMapper
自定义的Mapper,需要实现RedisMapper
完整代码
- package icu.wzk.demo05;
- import org.apache.flink.api.common.functions.MapFunction;
- import org.apache.flink.api.common.serialization.SimpleStringSchema;
- import org.apache.flink.api.java.tuple.Tuple2;
- import org.apache.flink.streaming.api.datastream.DataStreamSource;
- import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
- import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
- import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
- import org.apache.flink.streaming.connectors.redis.RedisSink;
- import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig;
- import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommand;
- import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommandDescription;
- import org.apache.flink.streaming.connectors.redis.common.mapper.RedisMapper;
- import java.util.Properties;
- public class StartApp {
- private static final String KAFKA_SERVER = "0.0.0.0:9092";
- private static final Integer KAFKA_PORT = 9092;
- private static final String KAFKA_TOPIC = "test";
- private static final String REDIS_SERVER = "0.0.0.0";
- private static final Integer REDIS_PORT = 6379;
- public static void main(String[] args) throws Exception {
- StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
- Properties properties = new Properties();
- properties.setProperty("bootstrap.servers", String.format("%s:%d", KAFKA_SERVER, KAFKA_PORT));
- FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>(KAFKA_TOPIC, new SimpleStringSchema(), properties);
- DataStreamSource<String> data = env.addSource(consumer);
- SingleOutputStreamOperator<Tuple2<String, String>> wordData = data.map(new MapFunction<String, Tuple2<String, String>>() {
- @Override
- public Tuple2<String, String> map(String value) throws Exception {
- return new Tuple2<>("l_words", value);
- }
- });
- FlinkJedisPoolConfig conf = new FlinkJedisPoolConfig
- .Builder()
- .setHost(REDIS_SERVER)
- .setPort(REDIS_PORT)
- .build();
- RedisSink<Tuple2<String, String>> redisSink = new RedisSink<>(conf, new MyRedisMapper());
- wordData.addSink(redisSink);
- env.execute();
- }
- public static class MyRedisMapper implements RedisMapper<Tuple2<String,String>> {
- @Override
- public RedisCommandDescription getCommandDescription() {
- return new RedisCommandDescription(RedisCommand.LPUSH);
- }
- @Override
- public String getKeyFromData(Tuple2<String,String> data) {
- return data.f0;
- }
- @Override
- public String getValueFromData(Tuple2<String,String> data) {
- return data.f1;
- }
- }
- }
复制代码 免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |