PostgreSQL JSON类型常用操作
说明
根据RFC 7159[1]中的说明,JSON 数据类型是用来存储 JSON(JavaScript Object Notation) 数据的。这种数据也可以被存储为text,但是 JSON 数据类型的 上风在于能逼迫要求每个被存储的值符合 JSON 规则。也有许多 JSON 干系的函数和操作符可以用于存储在这些数据类型中的数据
PostgreSQL 提供存储JSON数据的两种类型:json 和 jsonb。
一个JSON数值可以是一个简朴值(数字、字符串、true/null/false),数组,对象。下列都是合法的JSON表达式:
- -- 简单标量/简单值
- -- 简单值可以是数字、带引号的字符串、true、false或者null
- SELECT '5'::json;
- -- 零个或者更多个元素的数组(元素类型可以不同)
- SELECT '[1, 2, "foo", null]'::json;
- -- 含有键/值对的对象
- -- 注意对象的键必须总是带引号的字符串
- SELECT '{"bar": "baz", "balance": 7.77, "active": false}'::json;
- -- 数组和对象可以任意嵌套
- SELECT '{"foo": [true, "bar"], "tags": {"a": 1, "b": null}}'::json;
复制代码 以上的JSON类型都可以写成JSONB类型的表达式,例如:
- -- 简单标量/简单值,转化为jsonb类型
- SELECT '5'::jsonb;
复制代码 当一个 JSON 值被输入并且接着不做任何附加处理就输出时, json会输出和输入完全相同的文本,而jsonb 则不会保留语义上没故意义的细节(例如空格)。例如,注意下面的差异:
- SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::json;
- json
- -------------------------------------------------
- {"bar": "baz", "balance": 7.77, "active":false}
- (1 row)
- SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::jsonb;
- jsonb
- --------------------------------------------------
- {"bar": "baz", "active": false, "balance": 7.77}
- (1 row)
复制代码 值得一提的一种语义上偶然义的细节是,在jsonb中数据会被按照底层 numeric类型的活动来打印。实际上,这意味着用E记号 输入的数字被打印出来时就不会有该记号,例如:
- SELECT '{"reading": 1.230e-5}'::json, '{"reading": 1.230e-5}'::jsonb;
- json | jsonb
- -----------------------+-------------------------
- {"reading": 1.230e-5} | {"reading": 0.00001230}
- (1 row)
复制代码 JSON 根本类型和相应的PostgreSQL类型
JSON 根本类型PostgreSQL类型注释stringtext不允许\u0000,如果数据库编码不是 UTF8,非 ASCII Unicode 转义也是这样numbernumeric不允许NaN 和 infinity值booleanboolean只接受小写true和false拼写null(无)SQL NULL是一个差异的概念 json 和 jsonb区别
json 和 jsonb数据类型接受几乎完全相同的值聚集作为输入。
对比项jsonjsonb特点json数据类型存储输入文本的精准拷贝,处理函数必须在每 次执行时必须重新解析该数据。jsonb数据被存储在一种分解好的二进制格式中,因为必要做附加的转换,它在输入时要稍慢一些。但是 jsonb在处理时要快许多,因为不必要重新解析。字符处理json类型存储的是输入文本的正确拷贝,存储时会空格和JSON 对象内部的键的顺序。如果一个值中的 JSON 对象包含同一个键凌驾一次,所有的键/值对都会被保留(处理函数会把末了的值当作有用值)。jsonb不保留空格、不保留对象键的顺序并且不保留重复的对象键。如果在输入中指定了重复的键,只有末了一个值会被保留。效率json类型存储快,使用慢(写入快,读取慢)jsonb类型存储稍慢,使用较快(写入慢,读取快)索引支持不支持索引支持索引 示例:
- postgres=# select '{"name":"zhangsan","age":"12","name":"lisi"}'::json as json;
- json
- ----------------------------------------------
- {"name":"zhangsan","age":"12","name":"lisi"}
- (1 row)
- postgres=# select '{"name":"zhangsan","age":"12","name":"lisi"}'::jsonb as json;
- json
- -------------------------------
- {"age": "12", "name": "lisi"}
- (1 row)
复制代码 创建测试数据
- drop table if exists orders;
- CREATE TABLE orders (
- ID serial NOT NULL PRIMARY KEY,
- info json NOT NULL
- );
- INSERT INTO orders (info) VALUES
- ('{ "customer": "John Doe", "items": {"product": "Beer","qty": 6}}'),
- ('{ "customer": "Lily Bush", "items": {"product": "Diaper","qty": 24}}'),
- ('{ "customer": "Josh William", "items": {"product": "Toy Car","qty": 1}}'),
- ('{ "customer": "Mary Clark", "items": {"product": "Toy Train","qty": 2}}'),
- ('[{ "customer": "John Steven", "items": {"product": "Toy Car","qty": 5}},{ "customer": "Tom Hark", "items": {"product": "Diaper","qty": 7}}]'),
- ('{"customer":[{"name":"Jose Manuel","country":"Germany"},{"name":"John Seo","country":"Australia"}],"items":{"product":"Beer","qty":"13"}}');
复制代码 内容层级显示如下
- postgres=# select id,jsonb_pretty(info::jsonb) from orders;
- id | jsonb_pretty
- ----+------------------------------------
- 1 | { +
- | "items": { +
- | "qty": 6, +
- | "product": "Beer" +
- | }, +
- | "customer": "John Doe" +
- | }
- 2 | { +
- | "items": { +
- | "qty": 24, +
- | "product": "Diaper" +
- | }, +
- | "customer": "Lily Bush" +
- | }
- 3 | { +
- | "items": { +
- | "qty": 1, +
- | "product": "Toy Car" +
- | }, +
- | "customer": "Josh William" +
- | }
- 4 | { +
- | "items": { +
- | "qty": 2, +
- | "product": "Toy Train" +
- | }, +
- | "customer": "Mary Clark" +
- | }
- 5 | [ +
- | { +
- | "items": { +
- | "qty": 5, +
- | "product": "Toy Car" +
- | }, +
- | "customer": "John Steven" +
- | }, +
- | { +
- | "items": { +
- | "qty": 7, +
- | "product": "Diaper" +
- | }, +
- | "customer": "Tom Hark" +
- | } +
- | ]
- 6 | { +
- | "items": { +
- | "qty": "13", +
- | "product": "Beer" +
- | }, +
- | "customer": [ +
- | { +
- | "name": "Jose Manuel",+
- | "country": "Germany" +
- | }, +
- | { +
- | "name": "John Seo", +
- | "country": "Australia"+
- | } +
- | ] +
- | }
- (6 rows)
复制代码 操作符
操作符右操作数类型返回类型描述例子例子结果->intjson or jsonb获得 JSON 数组元素(索引从 0 开始,负整数从末尾开始计)'[{"a":"foo"},{"b":"bar"},{"c":"baz"}]'::json->2{"c":"baz"}->textjson or jsonb通过键获得 JSON 对象域'{"a": {"b":"foo"}}'::json->'a'{"b":"foo"}->>inttext以text情势获得 JSON 数组元素'[1,2,3]'::json->>23->>texttext以text情势获得 JSON 对象域'{"a":1,"b":2}'::json->>'b'2#>text[]json or jsonb获取在指定路径的 JSON 对象'{"a": {"b":{"c": "foo"}}}'::json#>'{a,b}'{"c": "foo"}#>>text[]text以text情势获取在指定路径的 JSON 对象'{"a":[1,2,3],"b":[4,5,6]}'::json#>>'{a,2}'3 额外的jsonb操作符
操作符右操作数类型描述例子@>jsonb左边的 JSON 值是否在顶层包含右边的 JSON 路径/值项?'{"a":1, "b":2}'::jsonb @> '{"b":2}'::jsonb<@jsonb左边的 JSON 路径/值项是否被包含在右边的 JSON 值的顶层?'{"b":2}'::jsonb <@ '{"a":1, "b":2}'::jsonb?text键/元素字符串是否存在于 JSON 值的顶层?'{"a":1, "b":2}'::jsonb ? 'b'`?`text[]这些数组字符串中的任何一个是否做为顶层键存在??&text[]是否所有这些数组字符串都作为顶层键存在?'["a", "b"]'::jsonb ?& array['a', 'b']``jsonb-text从左操作数删除键/值对大概string元素。键/值对基于它们的键值来匹配。'{"a": "b"}'::jsonb - 'a' -text[]从左操作数中删除多个键/值对大概string元素。键/值对基于它们的键值来匹配。'{"a": "b", "c": "d"}'::jsonb - '{a,c}'::text[] -integer删除具有指定索引(负值表示倒数)的数组元素。如果 顶层容器不是数组则抛出一个错误。'["a", "b"]'::jsonb - 1 #-text[]删除具有指定路径的域大概元素(对于 JSON 数组,负值 表示倒数)'["a", {"b":1}]'::jsonb #- '{1,b}'@?jsonpathJSON路径是否返回指定的JSON值的任何项目?'{"a":[1,2,3,4,5]}'::jsonb @? '$.a
? (@ > 2)'@@jsonpath返回指定的JSON路径谓词检查结果。只考虑结果的第一项。 如果结果不是布尔值,那么返回 null 。'{"a":[1,2,3,4,5]}'::jsonb @@ '$.a
> 2' 注意:
- ||操作符将其每一个操作数的顶层的元素串接起来。它不会递归 操作。例如,如果两个操作数都是具有公共域名称的对象,结果中的域值将只是来自右手操作数的值。
- @?和@@@操作符会抑制以下错误:缺乏对象字段或数组元素、意外的JSON项类型和数字错误。当搜索差异布局的JSON文档聚集时,这种活动可能会有帮助。
增删改查
查询
下面查询使用->操作符,查询json中所有顾客作为键:
- postgres=# SELECT info -> 'customer' AS customer FROM orders where id <=4;
- customer
- ----------------
- "John Doe"
- "Lily Bush"
- "Josh William"
- "Mary Clark"
- (4 rows)
复制代码 下面使用->>操作获取所有顾客作为文本:
- postgres=# SELECT info ->> 'customer' AS customer FROM orders where id <=4;
- customer
- --------------
- John Doe
- Lily Bush
- Josh William
- Mary Clark
- (4 rows)
复制代码 ->操作返回json对象,我们可以链式方式继续使用->>返回特定节点。举例,下面语句返回所有购买的商品:
- postgres=# SELECT info -> 'items' ->> 'product' as product FROM orders where id <=4;
- product
- -----------
- Beer
- Diaper
- Toy Car
- Toy Train
- (4 rows)
复制代码 首先使用info->'item’返回json对象。然后使用info->‘item’->>'product’返回所有产物文本值。
where子句
我们能在where子句中使用json操作符过滤数据行。举例,查找买了Diaper的记录:
- SELECT info ->> 'customer' AS customer FROM orders
- WHERE info -> 'items' ->> 'product' = 'Diaper';
- customer
- -----------
- Lily Bush
- (1 row)
复制代码 下面查询谁一次买了2个商品,语句如下:
- SELECT
- info ->> 'customer' AS customer,
- info -> 'items' ->> 'product' AS product
- FROM
- orders
- WHERE
- CAST (info -> 'items' ->> 'qty' AS INTEGER) = 2; -- 使用cast转换qty字段值为integer类型,然后和2进行比较
- customer | product
- ------------+-----------
- Mary Clark | Toy Train
- (1 row)
复制代码 以上两个案例都是where子句中的精确匹配,也可以模糊匹配
- -- 查询customer的值中包含john的记录
- postgres=# select * from orders where info #>> '{customer}' ~* 'john';
- id | info
- ----+------------------------------------------------------------------
- 1 | { "customer": "John Doe", "items": {"product": "Beer","qty": 6}}
- (1 row)
- postgres=# select * from orders where info ->> 'customer' ~* 'john';
- id | info
- ----+------------------------------------------------------------------
- 1 | { "customer": "John Doe", "items": {"product": "Beer","qty": 6}}
- (1 row)
复制代码 根据键名查询(函数实现)
- -- 查询表某个键对应的值
- postgres=# select json_object_field_text(info,'customer') from orders where id <=4;
- json_object_field_text
- ------------------------
- John Doe
- Lily Bush
- Josh William
- Mary Clark
- (5 rows)
- -- 查询customer中包含 lily的记录
- postgres=# select * from orders where json_object_field_text(info,'customer') ~* 'lily';
- id | info
- ----+----------------------------------------------------------------------
- 2 | { "customer": "Lily Bush", "items": {"product": "Diaper","qty": 24}}
- (1 row)
- -- 嵌套里面的查询
- select * from orders where json_object_field_text(info,'items')::json ->> 'product' ~* 'per';
- id | info
- ----+----------------------------------------------------------------------
- 2 | { "customer": "Lily Bush", "items": {"product": "Diaper","qty": 24}}
- (1 row)
复制代码 根据键名(属性)查询
- -- 查询有 items 属性的记录
- postgres=# select * from orders where info::jsonb ? 'items' and id <=4;
- id | info
- ----+-------------------------------------------------------------------------
- 1 | { "customer": "John Doe", "items": {"product": "Beer","qty": 6}}
- 2 | { "customer": "Lily Bush", "items": {"product": "Diaper","qty": 24}}
- 3 | { "customer": "Josh William", "items": {"product": "Toy Car","qty": 1}}
- 4 | { "customer": "Mary Clark", "items": {"product": "Toy Train","qty": 2}}
- (4 rows)
- -- 查询有 items 属性的记录,并且items数据不为空的数据
- select * from orders where info ->> 'items' is not null;
- -- 查询有 customer属性或items的记录
- select * from orders where info::jsonb ?| array['customer','items'];
- -- 查询既有 customer属性又有items的记录
- select * from orders where info::jsonb ?& array['customer','items'];
复制代码 根据键值查询记录
- -- 查询customer为'John Doe'购买的产品名和具体数量( @> 操作符表示:左侧顶层是否包含右侧)
- select info -> 'items' ->> 'product' as product,info -> 'items' ->> 'qty' as qty from orders
- where info::jsonb @> '{"customer":"John Doe"}';
- product | qty
- ---------+-----
- Beer | 6
- (1 row)
- -- 查询 customer中包含'John Doe'的记录数
- select * from orders where info::jsonb -> 'customer' ? 'John Doe';
- id | info
- ----+------------------------------------------------------------------
- 1 | { "customer": "John Doe", "items": {"product": "Beer","qty": 6}}
- (1 row)
- -- 查询 product中包含'Toy Car'的记录
- select * from orders where info::jsonb -> 'items' -> 'product' ? 'Toy Car';
- id | info
- ----+-------------------------------------------------------------------------
- 3 | { "customer": "Josh William", "items": {"product": "Toy Car","qty": 1}}
- (1 row)
复制代码 order by
- -- 按照商品购买数量(qty)的值降序
- select * from orders where id <=4
- order by (info -> 'items' ->> 'qty')::int desc;
- id | info
- ----+-------------------------------------------------------------------------
- 2 | { "customer": "Lily Bush", "items": {"product": "Diaper","qty": 24}}
- 1 | { "customer": "John Doe", "items": {"product": "Beer","qty": 6}}
- 4 | { "customer": "Mary Clark", "items": {"product": "Toy Train","qty": 2}}
- 3 | { "customer": "Josh William", "items": {"product": "Toy Car","qty": 1}}
- (4 rows)
- -- 排序+分页
- select * from orders where id <=4
- order by (info -> 'items' ->> 'qty')::int desc limit 2 offset 1;
- id | info
- ----+-------------------------------------------------------------------------
- 1 | { "customer": "John Doe", "items": {"product": "Beer","qty": 6}}
- 4 | { "customer": "Mary Clark", "items": {"product": "Toy Train","qty": 2}}
- (2 rows)
- -- 按照顾客(customer)的值排序
- select * from orders where id <=4
- order by info ->> 'customer';
- id | info
- ----+-------------------------------------------------------------------------
- 1 | { "customer": "John Doe", "items": {"product": "Beer","qty": 6}}
- 3 | { "customer": "Josh William", "items": {"product": "Toy Car","qty": 1}}
- 2 | { "customer": "Lily Bush", "items": {"product": "Diaper","qty": 24}}
- 4 | { "customer": "Mary Clark", "items": {"product": "Toy Train","qty": 2}}
- (4 rows)
- -- 按照顾客(customer)的值排序降序,再按照商品购买数量(qty)的值升序
- select * from orders where id <=4
- order by info ->> 'customer' desc,(info -> 'items' ->> 'qty')::int asc;
- id | info
- ----+-------------------------------------------------------------------------
- 4 | { "customer": "Mary Clark", "items": {"product": "Toy Train","qty": 2}}
- 2 | { "customer": "Lily Bush", "items": {"product": "Diaper","qty": 24}}
- 3 | { "customer": "Josh William", "items": {"product": "Toy Car","qty": 1}}
- 1 | { "customer": "John Doe", "items": {"product": "Beer","qty": 6}}
- (4 rows)
复制代码 json 数据的聚集函数
我们能对json数据使用聚集函数,如min,max,average,sum等。举例,下面语句返回最小数量,最大数量、均匀数量以及总数量。
- SELECT
- MIN (CAST (info -> 'items' ->> 'qty' AS INTEGER)),
- MAX (CAST (info -> 'items' ->> 'qty' AS INTEGER)),
- SUM (CAST (info -> 'items' ->> 'qty' AS INTEGER)),
- AVG (CAST (info -> 'items' ->> 'qty' AS INTEGER))
- FROM orders where id <=4;
- min | max | sum | avg
- -----+-----+-----+--------------------
- 1 | 24 | 33 | 8.2500000000000000
- (1 row)
复制代码 多表Join
创建表插入数据
- create table employees(info json);
- insert into employees values
- ('{"employee_id":101,"name":"Steven","hire_date":"1990-01-01","department_id":"10"}'),
- ('{"employee_id":102,"name":"Bruce","hire_date":"1993-01-01","department_id":"20"}'),
- ('{"employee_id":103,"name":"Nancy","hire_date":"1989-01-01","department_id":"30"}');
- create table departments(info json);
- insert into departments values
- ('{"department_id":10,"department_name":"Administration"}'),
- ('{"department_id":20,"department_name":"Marketing"}'),
- ('{"department_id":30,"department_name":"Purchasing"}');
复制代码 关联employees和departments查询员工的姓名和部门
- -- 查询employee_id 为101的员工的姓名和部门
- select t1.info ->> 'name' as emp_name,t2.info ->> 'department_name' as dep_name
- from employees t1 join departments t2
- on t1.info ->> 'department_id' = t2.info ->> 'department_id'
- where (t1.info ->> 'employee_id')::int = 101;
- emp_name | dep_name
- ----------+----------------
- Steven | Administration
- (1 row)
复制代码 增加JSON字段
1、jsonb键/值追加可通过||操作符
- -- jsonb类型可以直接使用 || 操作符
- update orders set info = info::jsonb||'{"remark":"The most important customer!"}'::jsonb
- where (info -> 'items' ->> 'qty')::int = (select max((info -> 'items' ->> 'qty')::int) from orders);
复制代码 2、jsonb_set函数
- update orders set info = jsonb_set(info::jsonb,'{remark}':'"The most important customer!"')
- where (info -> 'items' ->> 'qty')::int = (select max((info -> 'items' ->> 'qty')::int) from orders);
- -- 更新前表信息
- postgres=# select * from orders where id <=4;
- id | info
- ----+-------------------------------------------------------------------------
- 1 | { "customer": "John Doe", "items": {"product": "Beer","qty": 6}}
- 2 | { "customer": "Lily Bush", "items": {"product": "Diaper","qty": 24}}
- 3 | { "customer": "Josh William", "items": {"product": "Toy Car","qty": 1}}
- 4 | { "customer": "Mary Clark", "items": {"product": "Toy Train","qty": 2}}
- (4 rows)
- -- 更新后表信息
- postgres=# select * from orders where id <=4;
- id | info
- ----+----------------------------------------------------------------------------------------------------------------
- 1 | { "customer": "John Doe", "items": {"product": "Beer","qty": 6}}
- 3 | { "customer": "Josh William", "items": {"product": "Toy Car","qty": 1}}
- 4 | { "customer": "Mary Clark", "items": {"product": "Toy Train","qty": 2}}
- 2 | {"items": {"qty": 24, "product": "Diaper"}, "remark": "The most important customer!", "customer": "Lily Bush"}
- (4 rows)
复制代码 删除JSON字段
1、操作符-
- update orders set info = (info::jsonb - 'remark')::json
- where (info -> 'items' ->> 'qty')::int = (select max((info -> 'items' ->> 'qty')::int) from orders);
- postgres=# select * from orders where id <=4;
- id | info
- ----+-------------------------------------------------------------------------
- 1 | { "customer": "John Doe", "items": {"product": "Beer","qty": 6}}
- 3 | { "customer": "Josh William", "items": {"product": "Toy Car","qty": 1}}
- 4 | { "customer": "Mary Clark", "items": {"product": "Toy Train","qty": 2}}
- 2 | {"items": {"qty": 24, "product": "Diaper"}, "customer": "Lily Bush"}
- (4 rows)
复制代码 注意:操作符 - 用于从jsonb对象中删除键,如果类型为json必要转成jsonb才能使用,然后处理完后再转回json格式。
2、操作符#-
- -- 根据键名删除
- postgres=# select * from orders where id=1;
- id | info
- ----+------------------------------------------------------------------
- 1 | { "customer": "John Doe", "items": {"product": "Beer","qty": 6}}
- (1 row)
- -- 删除id为1记录的customer键
- postgres=# update orders set info=info::jsonb #- '{customer}' where id=1;
- UPDATE 1
- postgres=# select * from orders where id=1;
- id | info
- ----+------------------------------------------
- 1 | {"items": {"qty": 6, "product": "Beer"}}
- (1 row)
- -- 根据键名删除嵌套的内层
- postgres=# select * from orders where id=2;
- id | info
- ----+----------------------------------------------------------------------
- 2 | { "customer": "Lily Bush", "items": {"product": "Diaper","qty": 24}}
- (1 row)
- postgres=# update orders set info=info::jsonb #- '{items,product}' where id=2;
- UPDATE 1
- postgres=# select * from orders where id=2;
- id | info
- ----+-------------------------------------------------
- 2 | {"items": {"qty": 24}, "customer": "Lily Bush"}
- (1 row)
- -- 根据元素位置删除
- postgres=# SELECT '["red","green","blue"]'::jsonb - 0;
- ?column?
- -------------------
- ["green", "blue"]
- (1 row)
- -- 删除嵌套aliases中的位置为1的键/值
- postgres=# SELECT '{"name": "James", "aliases": ["Jamie","The Jamester","J Man"]}'::jsonb #- '{aliases,1}'::text[];
- ?column?
- --------------------------------------------------
- {"name": "James", "aliases": ["Jamie", "J Man"]}
- (1 row)
复制代码 修改json字段值
1、||操作符,||操作符可以连接json键,也可覆盖重复的键值
- -- 修改外层值
- update orders set info = info::jsonb || '{"customer":"Tom"}'::jsonb where (info ->> 'customer') = 'Josh William';
复制代码 2、jsonb_set函数
- -- 修改外层值
- UPDATE orders
- SET info = jsonb_set(info::jsonb,'{customer}','"Tom"')
- where id = 1;
- -- 修改内层值
- UPDATE orders
- SET info = jsonb_set(
- info::jsonb,
- '{items,qty}',
- '10')
- WHERE (info -> 'items' ->> 'qty')::int = 1;
复制代码 JSON类型数组常见操作
本次测试使用的JSON数组数据
- postgres=# select id,jsonb_pretty(info::jsonb) from orders where id>=5;
- id | jsonb_pretty
- ----+------------------------------------
- 5 | [ +
- | { +
- | "items": { +
- | "qty": 5, +
- | "product": "Toy Car" +
- | }, +
- | "customer": "John Steven" +
- | }, +
- | { +
- | "items": { +
- | "qty": 7, +
- | "product": "Diaper" +
- | }, +
- | "customer": "Tom Hark" +
- | } +
- | ]
- 6 | { +
- | "items": { +
- | "qty": "13", +
- | "product": "Beer" +
- | }, +
- | "customer": [ +
- | { +
- | "name": "Jose Manuel",+
- | "country": "Germany" +
- | }, +
- | { +
- | "name": "John Seo", +
- | "country": "Australia"+
- | } +
- | ] +
- | }
- (2 rows)
复制代码 查询数组的长度
- postgres=# select jsonb_array_length(info::jsonb) from orders where id=5;
- jsonb_array_length
- --------------------
- 2
- (1 row)
- postgres=# select jsonb_array_length(info::jsonb -> 'customer') from orders where id=6;
- jsonb_array_length
- --------------------
- 2
- (1 row)
复制代码 查询数组的指定元素(按照位置编号)
- -- 查询顶层数组中的第二个元素
- postgres=# select info::jsonb ->> 1 from orders where id=5;
- ?column?
- --------------------------------------------------------------------
- {"items": {"qty": 7, "product": "Diaper"}, "customer": "Tom Hark"}
- (1 row)
- -- 查询内层数组中的第一个元素
- postgres=# select info::jsonb -> 'customer' ->> 0 from orders where id=6;
- ?column?
- -----------------------------------------------
- {"name": "Jose Manuel", "country": "Germany"}
- (1 row)
复制代码 将数组拆分为JSON对象
- postgres=# select json_array_elements(info) from orders where id=5;
- json_array_elements
- ------------------------------------------------------------------------
- { "customer": "John Steven", "items": {"product": "Toy Car","qty": 5}}
- { "customer": "Tom Hark", "items": {"product": "Diaper","qty": 7}}
- (2 rows)
- postgres=# select json_array_elements(info -> 'customer') from orders where id=6;
- json_array_elements
- --------------------------------------------
- {"name":"Jose Manuel","country":"Germany"}
- {"name":"John Seo","country":"Australia"}
- (2 rows)
复制代码 在以上的底子上,再根据键名获取值
- -- 顶层
- postgres=# select json_array_elements(info) #> '{customer}' as customer from orders where id=5;
- customer
- ---------------
- "John Steven"
- "Tom Hark"
- (2 rows)
- postgres=# select json_array_elements(info) #>> '{customer}' as customer from orders where id=5;
- customer
- -------------
- John Steven
- Tom Hark
- (2 rows)
- -- 去重
- select distinct customer||'' from (select json_array_elements(info) #>> '{customer}' as customer from orders where id=5) tmp;
-
- -- 内层
- postgres=# select json_array_elements(info -> 'customer') #> '{name}' as customer from orders where id=6;
- customer
- ---------------
- "Jose Manuel"
- "John Seo"
- (2 rows)
- postgres=# select json_array_elements(info -> 'customer') #>> '{name}' as customer from orders where id=6;
- customer
- -------------
- Jose Manuel
- John Seo
- (2 rows)
复制代码 PostgreSQL 常用JSON 函数
JSON创建函数
函数描述例子结果to_json (anyelement)返回该值作为一个合法的JSON对象。数组和组合会被递归处理并且转换成数组和对象。如果输入包含一个从该类型到JSON的造型,会使用该cast函数来执行转换,否则将会产生一个JSON标量值。对于任何非数字、布尔值或空值的标量类型,会使用其文本表示,并且加上得当的引号和转义让它变成一个合法的JSON字符串。to_json ('Fred said "Hi."'::text)"Fred said \"Hi.\""array_to_json (anyarray [, pretty_bool])返回该数组为一个JSON数组。一个多维数组会变成一个JSON数组的数组。说明如果pretty_bool为true,在第一维元素之间会增加换行。array_to_json ('{{1,5},{99,100}}'::int[])[[1,5],[99,100]]row_to_json (record [, pretty_bool])返回该活动一个JSON对象。说明如果pretty_bool为true,在第一级别元素之间会增加换行。row_to_json (row(1,'foo')){"f1":1,"f2":"foo"} row_to_json(record [, pretty_bool])
把行作为一个 JSON 对象返回。如果*pretty_bool*为真,将在第1层元素之间增加换行。
此函数常用来生成json测试数据,比如将一个普通表转换成json类型表:
- create table test_t(id int,name varchar(100),age int,set varchar(10));
- insert into test_t values
- (1,'zhangsan',18,'male'),
- (2,'lisi',19,'female'),
- (3,'wangwu',18,'male');
- postgres=# select * from test_t;
- id | name | age | set
- ----+----------+-----+--------
- 1 | zhangsan | 18 | male
- 2 | lisi | 19 | female
- 3 | wangwu | 18 | male
- (3 rows)
- postgres=# select row_to_json(test_t) from test_t;
- row_to_json
- --------------------------------------------------
- {"id":1,"name":"zhangsan","age":18,"set":"male"}
- {"id":2,"name":"lisi","age":19,"set":"female"}
- {"id":3,"name":"wangwu","age":18,"set":"male"}
- (3 rows)
复制代码 JSON处理函数
函数返回类型描述例子例子结果json_each(json)set of key text, value json set of key text, value jsonb把最外层的JSON对象睁开成键/值对的聚集。select * from json_each('{"a":"foo", "b":"bar"}')` keyjson_each_text(json)set of key text, value text把最外层的JSON对象睁开成键/值对的聚集。返回值的类型是text。select * from json_each_text('{"a":"foo", "b":"bar"}')` keyjson_extract_path(from_json json, VARIADIC path_elems text[])json返回path_elems指定的JSON值。等效于#>操作符。json_extract_path('{"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}','f4'){"f5":99,"f6":"foo"}json_extract_path_text(from_json json, VARIADIC path_elems text[])text返回path_elems指定的JSON值为文本。等效于#>>操作符。json_extract_path_text('{"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}','f4', 'f6')foojson_object_keys(json)setof text返回最外层JSON对象中的键聚集。json_object_keys('{"f1":"abc","f2":{"f3":"a", "f4":"b"}}') json_object_keys ------------------ f1 f2json_populate_record(base anyelement, from_json json)anyelement把Expands the object in from_json中的对象睁开成一行,其中的列匹配由base定义的记录类型。select * from json_populate_record(null::myrowtype, '{"a":1,"b":2}')` ajson_populate_recordset(base anyelement, from_json json)set of anyelement将from_json中最外层的对象数组睁开成一个行聚集,其中的列匹配由base定义的记录类型。select * from json_populate_recordset(null::myrowtype, '[{"a":1,"b":2},{"a":3,"b":4}]')` ajson_array_elements(json)set of json将一个JSON数组睁开成JSON值的一个聚集。select * from json_array_elements('[1,true, [2,false]]') value ----------- 1 true [2,false]json_object_field_text(json_obj json, key text)text提取JSON对象中指定字段的文本值,但它只能用于直接提取顶层字段,若必要过滤嵌套字段,可以使用->和->>运算符jsonb_pretty(from_json jsonb)text把*from_json*返回成一段 缩进后的 JSON 文本。jsonb_pretty(‘[{“f1”:1,“f2”:null},2,null,3]’)jsonb_set(target jsonb, path text[], new_value jsonb[,create_missing boolean])jsonb返回*target*,其中由 *path*指定的节用 *new_value*替换,如果 *path*指定的项不存在并且 *create_missing为真(默认为 true)则加上 new_value。正如面向路径的 操作符一样,出现在path*中的 负整数表示从 JSON 数组的末尾开始数。jsonb_set(‘[{“f1”:1,“f2”:null},2,null,3]’, ‘{0,f1}’,‘[2,3,4]’, false)
jsonb_set(‘[{“f1”:1,“f2”:null},2]’, ‘{0,f3}’,‘[2,3,4]’)[{“f1”:[2,3,4],“f2”:null},2,null,3] [{“f1”: 1, “f2”: null, “f3”: [2, 3, 4]}, 2] json_each()
json_each()函数的作用是:将最外层的JSON对象睁开为一组键值对。举例:
- postgres=# SELECT json_each(info) FROM orders where id <=4;
- json_each
- ---------------------------------------------------
- (customer,"""John Doe""")
- (items,"{""product"": ""Beer"",""qty"": 6}")
- (customer,"""Lily Bush""")
- (items,"{""product"": ""Diaper"",""qty"": 24}")
- (customer,"""Josh William""")
- (items,"{""product"": ""Toy Car"",""qty"": 1}")
- (customer,"""Mary Clark""")
- (items,"{""product"": ""Toy Train"",""qty"": 2}")
- (8 rows)
复制代码 如果想得到一组key-value对作为文本,可以使用json_each_text()函数。
- postgres=# SELECT json_each_text(info) FROM orders where id <=4;
- json_each_text
- ---------------------------------------------------
- (customer,"John Doe")
- (items,"{""product"": ""Beer"",""qty"": 6}")
- (customer,"Lily Bush")
- (items,"{""product"": ""Diaper"",""qty"": 24}")
- (customer,"Josh William")
- (items,"{""product"": ""Toy Car"",""qty"": 1}")
- (customer,"Mary Clark")
- (items,"{""product"": ""Toy Train"",""qty"": 2}")
- (8 rows)
复制代码 其他示例
- postgres=# SELECT * FROM json_each_text('{"a":"foo", "b":"bar"}');
- key | value
- -----+-------
- a | foo
- b | bar
- (2 rows)
- postgres=# SELECT json_each_text('{"a":"foo", "b":"bar"}');
- json_each_text
- ----------------
- (a,foo)
- (b,bar)
- (2 rows)
复制代码 json_object_keys()
json_object_keys()函数可以获得json对象最外层的一组键。举例:
- postgres=# SELECT json_object_keys (info->'items') FROM orders where id <=4;
- json_object_keys
- ------------------
- product
- qty
- product
- qty
- product
- qty
- product
- qty
- (8 rows)
复制代码 json_typeof()
json_typeof函数返回json最外层key的数据类型作为字符串。可能是number, boolean, null, object, array, string。
- -- 下面语句查询所有item的数据类型:
- postgres=# SELECT json_typeof (info->'items') FROM orders where id <=4;
- json_typeof
- -------------
- object
- object
- object
- object
- (4 rows)
- -- 下面语句返回嵌套类型中qty字段的数据类型:
- postgres=# SELECT json_typeof (info->'items'->'qty') FROM orders where id <=4;
- json_typeof
- -------------
- number
- number
- number
- number
- (4 rows)
复制代码 json_object_field_text(json_obj json, key text)
在 PostgreSQL 中,json_object_field_text 函数用于从 JSON 对象中提取指定键的文本值。以下是其具体用法:
语法
- json_object_field_text(json_obj json, key text) → text
复制代码
- json_obj: 目标 JSON 对象。
- key: 必要提取的字段名(键)。
功能
json_object_field_text 函数从 JSON 对象中提取指定键的值,并返回该值的文本表示。如果键不存在,则返回 NULL。
使用示例
假设有以下 JSON 数据:
- { "customer": "Lily Bush", "items": {"product": "Diaper", "qty": 24} }
复制代码 1. 提取顶层字段值
从 info 字段中提取 customer 的值:
- SELECT json_object_field_text(info, 'customer') AS customer_name
- FROM orders;
复制代码 2. 提取嵌套字段值
对于嵌套字段,首先必要提取包含目标字段的对象,然后从中提取字段值。例如,提取 items 对象中的 product 值:
- SELECT json_object_field_text(info, 'items') AS items_json
- FROM orders;
复制代码 要进一步从 items JSON 对象中提取 product 字段,可以联合 jsonb 运算符:
- SELECT (json_object_field_text(info, 'items')::jsonb->>'product') AS product_name
- FROM orders;
复制代码 注意事项
- json_object_field_text 函数专用于提取 JSON 对象的顶层字段。对于嵌套字段,可能必要联合其他 JSON 操作函数和运算符。
- 如果使用 jsonb 类型,可以直接使用 -> 和 ->> 运算符来处理嵌套字段,而不必转换为 text。
示例表
假设 orders 表的 info 列为 JSON 类型,以下是如何使用这些函数的示例:
- CREATE TABLE orders (
- id SERIAL PRIMARY KEY,
- info JSON
- );
- INSERT INTO orders (info) VALUES
- ('{"customer": "Lily Bush", "items": {"product": "Diaper", "qty": 24}}'),
- ('{"customer": "John Doe", "items": {"product": "Wipes", "qty": 50}}');
复制代码 查询 customer 字段的值:
- SELECT json_object_field_text(info, 'customer') AS customer_name
- FROM orders;
复制代码 提取 items 对象中的 product 值:
- SELECT (json_object_field_text(info, 'items')::jsonb->>'product') AS product_name
- FROM orders;
复制代码 json_extract_path_text(from_json json, VARIADIC path_elems text[])
以text返回由path_elems指向的 JSON 值(等效于#>>操作符)。
- select json_extract_path_text(info,'customer') from orders where id<=4;
- -- 等价于
- select info #>> '{customer}' from orders where id<=4;
- ?column?
- --------------
- John Doe
- Lily Bush
- Josh William
- Mary Clark
- (5 rows)
复制代码 jsonb_pretty(from_json jsonb)
把*from_json*返回成一段 缩进后的 JSON 文本。
- postgres=# select id,jsonb_pretty(info::jsonb) from orders where id=1;
- id | jsonb_pretty
- ----+----------------------------
- 1 | { +
- | "items": { +
- | "qty": 6, +
- | "product": "Beer" +
- | }, +
- | "customer": "John Doe"+
- | }
- (1 row)
复制代码 jsonb_set
jsonb_set() 函数参数如下:
- jsonb_set(target jsonb, // 需要修改的数据
- path text[], // 数据路径
- new_value jsonb, // 新数据
- create_missing boolean default true)
复制代码 如果create_missing 是true (缺省是true),并且path指定的路径在target 中不存在,那么target将包含path指定部门, new_value替换部门, 大概new_value添加部门。
- -- 更新 target 第0 个元素 key 为 f1 的值,如果f1 不存在 忽略
- select jsonb_set('[{"f1":1,"f2":null},2,null,3]', '{0,f1}','[2,3,4]', false);
- jsonb_set
- ---------------------------------------------
- [{"f1": [2, 3, 4], "f2": null}, 2, null, 3]
- -- 更新 target 第0 个元素 key 为 f3 的值,如果f3 不存在 创建
- select jsonb_set('[{"f1":1,"f2":null},2]', '{0,f3}','[2,3,4]');
- jsonb_set
- ---------------------------------------------
- [{"f1": 1, "f2": null, "f3": [2, 3, 4]}, 2]
-
- -- 更新 target 第0 个元素 key 为 f3 的值,如果f3 不存在 忽略
- select jsonb_set('[{"f1":1,"f2":null},2]', '{0,f3}','[2,3,4]', false);
- jsonb_set
- ---------------------------------------------
- [{"f1": 1, "f2": null}, 2]
复制代码 json_array_elements*
把顶层 JSON 数组扩展成一个text值聚集。
- postgres=# select * from json_array_elements('[1,true,[2,false]]');
- value
- -----------
- 1
- true
- [2,false]
- (3 rows)
- postgres=# select * from json_array_elements_text('["foo", "bar"]');
- value
- -------
- foo
- bar
- (2 rows)
复制代码 json_array_length
返回顶层json数组中的元素数量。
- postgres=# select json_array_length('[1,2,3,{"f1":1,"f2":[5,6]},4]');
- json_array_length
- -------------------
- 5
- (1 row)
- postgres=# select json_array_length('["foo", "bar"]');
- json_array_length
- -------------------
- 2
- (1 row)
复制代码 JSON与JSONB读写性能测试
构建JSON、JSONB测试表
下面通过一个简朴的例子测试下json、jsonb的读写性能差异,计划创建以下三张表:
- user_ini:底子数据表,并插入200万测试数据;
- tbl_user_json:: json 数据类型表,200万数据;
- tbl_user_jsonb: jsonb 数据类型表,200万数据;
- CREATE TABLE user_ini(
- id int4,
- user_id int8,
- user_name varchar(64),
- create_time timestamp(6) with time zone default clock_timestamp());
- INSERT INTO user_ini(id,user_id,user_name)
- SELECT r,round(random()*2000000), r || '_francs' FROM generate_series(1,2000000) as r;
复制代码 计划使用user_ini表数据生成json、jsonb数据,创建user_ini_json、user_ini_jsonb表,如下所示:
- CREATE TABLE tbl_user_json(id serial, user_info json);
- CREATE TABLE tbl_user_jsonb(id serial, user_info jsonb);
复制代码 JSON与JSONB表写性能测试
根据user_ini数据通过row_to_json函数向表user_ini_json插入200万json数据,如下:
- postgres=# \timing
- Timing is on.
- postgres=# INSERT INTO tbl_user_json(user_info) SELECT row_to_json(user_ini) FROM user_ini;
- INSERT 0 2000000
- Time: 15093.043 ms (00:15.093)
复制代码 从以上结果看出tbl_user_json插入200万数据花了15秒左右;接着根据user_ini表数据生成200万jsonb数据并插入表tbl_user_jsonb,如下:
- postgres=# INSERT INTO tbl_user_jsonb(user_info) SELECT row_to_json(user_ini)::jsonb FROM user_ini;
- INSERT 0 2000000
- Time: 19801.533 ms (00:19.802)
复制代码 从以上看出tbl_user_jsonb表插入200万jsonb数据花了19秒左右,恰恰验证了json数据写入比jsonb快。
比力两表占用空间巨细,如下所示
- postgres=# \dt+ tbl_user_json
- List of relations
- Schema | Name | Type | Owner | Size | Description
- --------+---------------+-------+----------+--------+-------------
- public | tbl_user_json | table | postgres | 281 MB |
- (1 row)
- postgres=# \dt+ tbl_user_jsonb
- List of relations
- Schema | Name | Type | Owner | Size | Description
- --------+----------------+-------+----------+--------+-------------
- public | tbl_user_jsonb | table | postgres | 333 MB |
- (1 row)
复制代码 从占用空间来看,同样的数据量jsonb数据类型占用空间比json稍大。
随机查一条数据对比
- postgres=# select * from tbl_user_json limit 1;
- id | user_info
- ----+----------------------------------------------------------------------------------------------------
- 1 | {"id":1,"user_id":1141402,"user_name":"1_francs","create_time":"2024-08-11T01:33:57.532707+08:00"}
- (1 row)
- Time: 0.600 ms
- postgres=# select * from tbl_user_jsonb limit 1;
- id | user_info
- ----+-----------------------------------------------------------------------------------------------------------
- 1 | {"id": 1, "user_id": 1141402, "user_name": "1_francs", "create_time": "2024-08-11T01:33:57.532707+08:00"}
- (1 row)
- Time: 0.710 ms
复制代码 JSON与JSONB表读性能测试
对于json、jsonb读性能测试我们选择基于json、jsonb键值查询的场景,例如,根据user_info字段的user_name键的值查询,如下所示:
- postgres=# EXPLAIN ANALYZE SELECT * FROM tbl_user_jsonb WHERE user_info->>'user_name'='1_francs';
- QUERY PLAN
- ------------------------------------------------------------------------------------------------------------------------------------
- Gather (cost=1000.00..57053.22 rows=10000 width=143) (actual time=0.576..213.625 rows=1 loops=1)
- Workers Planned: 2
- Workers Launched: 2
- -> Parallel Seq Scan on tbl_user_jsonb (cost=0.00..55053.22 rows=4167 width=143) (actual time=128.923..198.702 rows=0 loops=3)
- Filter: ((user_info ->> 'user_name'::text) = '1_francs'::text)
- Rows Removed by Filter: 666666
- Planning Time: 0.098 ms
- Execution Time: 213.656 ms
- (8 rows)
- postgres=# EXPLAIN ANALYZE SELECT * FROM tbl_user_json WHERE user_info->>'user_name'='1_francs';
- QUERY PLAN
- -----------------------------------------------------------------------------------------------------------------------------------
- Gather (cost=1000.00..50401.43 rows=10000 width=113) (actual time=0.353..746.473 rows=1 loops=1)
- Workers Planned: 2
- Workers Launched: 2
- -> Parallel Seq Scan on tbl_user_json (cost=0.00..48401.43 rows=4167 width=113) (actual time=481.034..726.493 rows=0 loops=3)
- Filter: ((user_info ->> 'user_name'::text) = '1_francs'::text)
- Rows Removed by Filter: 666666
- Planning Time: 0.066 ms
- Execution Time: 746.494 ms
- (8 rows)
复制代码 如上普通查询没有走索引的环境可以看出jsonb的读更快一点。
为更好的对比tbl_user_json、tbl_user_jsonb表基于键值查询的效率,计划根据user_info字段id键举行范围扫描对比性能,创建索引如下:
- CREATE INDEX idx_gin_user_info_id ON tbl_user_json USING btree (((user_info ->> 'id')::integer));
- CREATE INDEX idx_gin_user_infob_id ON tbl_user_jsonb USING btree (((user_info ->> 'id')::integer));
复制代码 创建索引后对比查询性能
- EXPLAIN ANALYZE SELECT id,user_info->'id',user_info->'user_name' FROM tbl_user_json
- WHERE (user_info->>'id')::int4>1 AND (user_info->>'id')::int4<10000;
- QUERY PLAN
- --------------------------------------------------------------------------------------------------------------------------------------
- Bitmap Heap Scan on tbl_user_json (cost=214.93..22655.42 rows=10000 width=68) (actual time=1.538..24.549 rows=9998 loops=1)
- Recheck Cond: ((((user_info ->> 'id'::text))::integer > 1) AND (((user_info ->> 'id'::text))::integer < 10000))
- Heap Blocks: exact=173
- -> Bitmap Index Scan on idx_gin_user_info_id (cost=0.00..212.43 rows=10000 width=0) (actual time=1.495..1.495 rows=9998 loops=1)
- Index Cond: ((((user_info ->> 'id'::text))::integer > 1) AND (((user_info ->> 'id'::text))::integer < 10000))
- Planning Time: 0.546 ms
- Execution Time: 25.101 ms
- (7 rows)
- EXPLAIN ANALYZE SELECT id,user_info->'id',user_info->'user_name' FROM tbl_user_jsonb
- WHERE (user_info->>'id')::int4>1 AND (user_info->>'id')::int4<10000;
- QUERY PLAN
- ---------------------------------------------------------------------------------------------------------------------------------------
- Bitmap Heap Scan on tbl_user_jsonb (cost=214.93..24049.23 rows=10000 width=68) (actual time=0.712..7.030 rows=9998 loops=1)
- Recheck Cond: ((((user_info ->> 'id'::text))::integer > 1) AND (((user_info ->> 'id'::text))::integer < 10000))
- Heap Blocks: exact=212
- -> Bitmap Index Scan on idx_gin_user_infob_id (cost=0.00..212.43 rows=10000 width=0) (actual time=0.672..0.673 rows=9998 loops=1)
- Index Cond: ((((user_info ->> 'id'::text))::integer > 1) AND (((user_info ->> 'id'::text))::integer < 10000))
- Planning Time: 0.276 ms
- Execution Time: 7.413 ms
- (7 rows)
复制代码 如上user_info字段id键值在1到10000范围内的记录走了索引,而且jsonb检索效率比json快了四倍以上。
从以上两个测试看出,恰恰验证了 “json写入比jsonb快,但检索时比jsonb慢” 的观点,值得一提的是如果必要通过key/value举行检索,例如以下。
- EXPLAIN ANALYZE SELECT * FROM tbl_user_json WHERE user_info::jsonb @> '{"user_name": "2_francs"}';
- QUERY PLAN
- -----------------------------------------------------------------------------------------------------------------------------------
- Gather (cost=1000.00..51684.33 rows=2000 width=113) (actual time=0.355..1144.857 rows=1 loops=1)
- Workers Planned: 2
- Workers Launched: 2
- -> Parallel Seq Scan on tbl_user_json (cost=0.00..50484.33 rows=833 width=113) (actual time=759.142..1140.358 rows=0 loops=3)
- Filter: ((user_info)::jsonb @> '{"user_name": "2_francs"}'::jsonb)
- Rows Removed by Filter: 666666
- Planning Time: 0.197 ms
- Execution Time: 1144.885 ms
- (8 rows)
- EXPLAIN ANALYZE SELECT * FROM tbl_user_jsonb WHERE user_info @> '{"user_name": "2_francs"}';
- QUERY PLAN
- -----------------------------------------------------------------------------------------------------------------------------------
- Gather (cost=1000.00..54169.67 rows=2000 width=143) (actual time=0.473..233.123 rows=1 loops=1)
- Workers Planned: 2
- Workers Launched: 2
- -> Parallel Seq Scan on tbl_user_jsonb (cost=0.00..52969.67 rows=833 width=143) (actual time=150.780..227.646 rows=0 loops=3)
- Filter: (user_info @> '{"user_name": "2_francs"}'::jsonb)
- Rows Removed by Filter: 666666
- Planning Time: 0.114 ms
- Execution Time: 233.147 ms
- (8 rows)
- Time: 233.684 ms
复制代码 在tbl_user_jsonb字段user_info上创建gin索引,如下所示:
- CREATE INDEX idx_tbl_user_jsonb_user_Info ON tbl_user_jsonb USING gin(user_Info);
复制代码 索引创建后,再次执行一下,如下所示:
- EXPLAIN ANALYZE SELECT * FROM tbl_user_jsonb WHERE user_info @> '{"user_name": "2_francs"}';
- QUERY PLAN
- -----------------------------------------------------------------------------------------------------------------------------------------
- Bitmap Heap Scan on tbl_user_jsonb (cost=59.50..6647.38 rows=2000 width=143) (actual time=0.191..0.193 rows=1 loops=1)
- Recheck Cond: (user_info @> '{"user_name": "2_francs"}'::jsonb)
- Heap Blocks: exact=1
- -> Bitmap Index Scan on idx_tbl_user_jsonb_user_info (cost=0.00..59.00 rows=2000 width=0) (actual time=0.173..0.174 rows=1 loops=1)
- Index Cond: (user_info @> '{"user_name": "2_francs"}'::jsonb)
- Planning Time: 0.632 ms
- Execution Time: 0.228 ms
- (7 rows)
复制代码 PostgreSQ全文检索支持JSON和JSONB
PostgreSQL全文检索简介
对于大多数应用全文检索很少放到数据库中实现,一样平常使用单独的全文检索引擎,例如基于SQL全文检索引擎Sphinx。PostgreSQL支持全文检索,对于规模不大的应用如果不想搭建专门的搜索引擎,PostgreSQL的全文检索也可以满足需求。
如果没有使用专门的搜索引擎,大部检索必要通过数据库like操作匹配,这种检索方式重要缺点在于:
- 不能很好的支持索引,通常需全表扫描检索数据,数据量大时检索性能很低。
- 不提供检索结果排序,当输出结果数据量非常大时表现更加显着。
PostgreSQL全文检索能有用地办理这个问题,PostgreSQL全文检索通过以下两种数据类型来实现。
1、tsvector
tsvector全文检索数据类型代表一个被优化的可以基于搜索的文档,将一串字符串转换成tsvector全文检索数据类型,如下:
- postgres=# SELECT 'Hello,cat,how are u? cat is smiling! '::tsvector;
- tsvector
- --------------------------------------------------
- 'Hello,cat,how' 'are' 'cat' 'is' 'smiling!' 'u?'
- (1 row)
复制代码 可以看到,字符串的内容被分隔成好几段,但通过::tsvector只是做类型转换,没有举行数据标准化处理,对于英文全文检索可通过函数to_tsvector举行数据标准化,如下所示:
- postgres=# SELECT to_tsvector('english','Hello cat,');
- to_tsvector
- -------------------
- 'cat':2 'hello':1
- (1 row)
复制代码 2、tsquery
tsquery表示一个文本查询,存储用于搜索的词,并且支持布尔操作&、|、!,将字符串转换成tsquery,如下所示:
- postgres=# SELECT 'hello&cat'::tsquery;
- tsquery
- -----------------
- 'hello' & 'cat'
- (1 row)
复制代码 上述只是转换成tsquery类型,而并没有做标准化,使用to_tsquery函数可以执行标准化,如下所示:
- postgres=# SELECT to_tsquery('hello&cat');
- to_tsquery
- -----------------
- 'hello' & 'cat'
- (1 row)
复制代码 一个全文检索示例如下,检索字符串是否包罗hello和cat字符,本例中返回真。
- postgres=# SELECT to_tsvector('english','Hello cat,how are u') @@ to_tsquery('hello&cat');
- ?column?
- ----------
- t
- (1 row)
复制代码 检索字符串是否包含字符hello和dog,本例中返回假。
- postgres=# SELECT to_tsvector('english','Hello cat,how are u') @@ to_tsquery('hello&dog');
- ?column?
- ----------
- f
- (1 row)
复制代码 有爱好可以测试一下tsquery的其他操作符,例如|、!等。
注意:这里使用了带双参数的to_tsvector函数,函数to_tsvector双参数的格式如下:
- to_tsvector([ config regconfig , ] document text)
- #本节to_tsvector函数指定了config参数为english,如果不指定config参数,则默认使用default_text_search_config参数的配置。
- postgres=# select name,setting,unit,context from pg_settings where name ~* 'default_text_search_config';
- name | setting | unit | context
- ----------------------------+--------------------+------+---------
- default_text_search_config | pg_catalog.english | | user
- (1 row)
复制代码 英文全文检索例子
下面演示一个英文全文检索示例,创建一张测试表并插入200万测试数据,如下所示:
- CREATE TABLE test_search(id int4,name text);
- INSERT INTO test_search(id,name) SELECT n, n||'_francs' FROM generate_series(1,2000000) n;
复制代码 执行以下SQL,查询test_search表name字段包含字符1_francs的记录。
- postgres=# SELECT * FROM test_search WHERE name LIKE '1_francs';
- id | name
- ----+----------
- 1 | 1_francs
- (1 row)
- -- 执行计划
- EXPLAIN ANALYZE SELECT * FROM test_search WHERE name LIKE '1_francs';
- QUERY PLAN
- ----------------------------------------------------------------------------------------------------------------------------
- Gather (cost=1000.00..24166.67 rows=200 width=18) (actual time=0.423..84.066 rows=1 loops=1)
- Workers Planned: 2
- Workers Launched: 2
- -> Parallel Seq Scan on test_search (cost=0.00..23146.67 rows=83 width=18) (actual time=50.502..77.706 rows=0 loops=3)
- Filter: (name ~~ '1_francs'::text)
- Rows Removed by Filter: 666666
- Planning Time: 0.262 ms
- Execution Time: 84.090 ms
- (8 rows)
复制代码 以上执行计划走了全表扫描,执行时间为84毫秒左右,性能很低,接着创建索引,如下所示
- CREATE INDEX idx_gin_search ON test_search USING gin(to_tsvector('english',name));
复制代码 执行以下SQL,查询test_search表name字段包含字符1_francs的记录。
- postgres=# SELECT * FROM test_search WHERE to_tsvector('english',name) @@ to_tsquery('english','1_francs');
- id | name
- ----+----------
- 1 | 1_francs
- (1 row)
- -- 执行计划
- EXPLAIN ANALYZE SELECT * FROM test_search WHERE to_tsvector('english',name) @@ to_tsquery('english','1_francs');
- QUERY PLAN
- -------------------------------------------------------------------------------------------------------------------------
- Bitmap Heap Scan on test_search (cost=36.39..240.11 rows=50 width=18) (actual time=0.129..0.131 rows=1 loops=1)
- Recheck Cond: (to_tsvector('english'::regconfig, name) @@ '''1'' & ''franc'''::tsquery)
- Heap Blocks: exact=1
- -> Bitmap Index Scan on idx_gin_search (cost=0.00..36.38 rows=50 width=0) (actual time=0.111..0.112 rows=1 loops=1)
- Index Cond: (to_tsvector('english'::regconfig, name) @@ '''1'' & ''franc'''::tsquery)
- Planning Time: 0.289 ms
- Execution Time: 0.157 ms
- (7 rows)
复制代码 创建索引后,以上查询走了索引并且执行时间下降到0.157毫秒,性能提拔很大,值得一提的是如果SQL改成以下,则不走索引,如下所示:
- EXPLAIN ANALYZE SELECT * FROM test_search WHERE to_tsvector(name) @@ to_tsquery('1_francs');
- QUERY PLAN
- ---------------------------------------------------------------------------------------------------------------------------------
- Gather (cost=1000.00..440818.33 rows=50 width=18) (actual time=0.339..2869.023 rows=1 loops=1)
- Workers Planned: 2
- Workers Launched: 2
- -> Parallel Seq Scan on test_search (cost=0.00..439813.33 rows=21 width=18) (actual time=1908.625..2864.505 rows=0 loops=3)
- Filter: (to_tsvector(name) @@ to_tsquery('1_francs'::text))
- Rows Removed by Filter: 666666
- Planning Time: 0.160 ms
- Execution Time: 2869.147 ms
- (8 rows)
复制代码 由于创建索引时使用的是to_tsvector('english',name)函数索引,带了两个参数,因此where条件中的to_tsvector函数带两个参数才能走索引,而to_tsvector(name)不走索引。
JSON、JSONB全文检索实践
在PostgreSQL10版本之前全文检索不支持json和jsonb数据类型,10版本的一个重要特性是全文检索支持json和jsonb数据类型,这一末节演示下10版本以后的这个新特性。
当前测试版本为12版本
- postgres=# select version();
- version
- ----------------------------------------------------------------------------------------------------------
- PostgreSQL 12.17 on x86_64-pc-linux-gnu, compiled by gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-36), 64-bit
- (1 row)
复制代码 PostgreSQL12版本与9.6版本to_tsvector函数的差异
先来看下9.6版本to_tsvector函数,如下:
- [pg96@pghost1 ~]$ psql
- psql (9.6.21)
- Type "help" for help.
- postgres=# \df *to_tsvector*
- List of functions
- Schema | Name | Result data type | Argument data types | Type
- ------------+-------------------+------------------+---------------------+--------
- pg_catalog | array_to_tsvector | tsvector | text[] | normal
- pg_catalog | to_tsvector | tsvector | regconfig, text | normal
- pg_catalog | to_tsvector | tsvector | text | normal
- (3 rows)
复制代码 从以上看出9.6版本to_tsvector函数的输入参数仅支持text、text[]数据类型,接着看下12版本的to_tsvector函数,如下所示:
- [postgres@centos7 ~]$ psql
- psql (12.17)
- Type "help" for help.
- postgres=# \df *to_tsvector*
- List of functions
- Schema | Name | Result data type | Argument data types | Type
- ------------+-------------------+------------------+-------------------------+------
- pg_catalog | array_to_tsvector | tsvector | text[] | func
- pg_catalog | json_to_tsvector | tsvector | json, jsonb | func
- pg_catalog | json_to_tsvector | tsvector | regconfig, json, jsonb | func
- pg_catalog | jsonb_to_tsvector | tsvector | jsonb, jsonb | func
- pg_catalog | jsonb_to_tsvector | tsvector | regconfig, jsonb, jsonb | func
- pg_catalog | to_tsvector | tsvector | json | func
- pg_catalog | to_tsvector | tsvector | jsonb | func
- pg_catalog | to_tsvector | tsvector | regconfig, json | func
- pg_catalog | to_tsvector | tsvector | regconfig, jsonb | func
- pg_catalog | to_tsvector | tsvector | regconfig, text | func
- pg_catalog | to_tsvector | tsvector | text | func
- (11 rows)
复制代码 从以上看出,12版本的to_tsvector函数支持的数据类型增加了json和jsonb。
JSON数据全文检索测试
创建数据生成函数
为了便于生成测试数据,创建以下两个函数用来随机生成指定长度的字符串,创建random_range(int4, int4)函数如下:
- CREATE OR REPLACE FUNCTION random_range(int4, int4)
- RETURNS int4
- LANGUAGE SQL
- AS $$
- SELECT ($1 + FLOOR(($2 - $1 + 1) * random() ))::int4;
- $$;
- -- 接着创建random_text_simple(length int4)函数,此函数会调用random_range(int4, int4)函数。
- CREATE OR REPLACE FUNCTION random_text_simple(length int4)
- RETURNS text
- LANGUAGE PLPGSQL
- AS $$
- DECLARE
- possible_chars text := '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ';
- output text := '';
- i int4;
- pos int4;
- BEGIN
- FOR i IN 1..length LOOP
- pos := random_range(1, length(possible_chars));
- output := output || substr(possible_chars, pos, 1);
- END LOOP;
- RETURN output;
- END;
- $$;
复制代码 random_text_simple(length int4)函数可以随机生成指定长度字符串,如下示例:
- postgres=# SELECT random_text_simple(3);
- random_text_simple
- --------------------
- 4dI
- (1 row)
- postgres=# SELECT random_text_simple(6);
- random_text_simple
- --------------------
- 3uLknl
- (1 row)
复制代码 创建JSON测试表
创建user_ini测试表,并通过random_text_simple(length int4)函数插入100万随机生成六位字符的字符串测试数据,如下所示:
- drop table if exists user_ini;
- CREATE TABLE user_ini(
- id int4,
- user_id int8,
- user_name varchar(64),
- create_time timestamp(6) with time zone default clock_timestamp());
- INSERT INTO user_ini(id,user_id,user_name)
- SELECT r,round(random()*1000000), random_text_simple(6) FROM generate_series(1,1000000) as r;
复制代码 创建tbl_user_search_json表,并通过row_to_json函数将表user_ini行数据转换成json数据,如下所示:
- CREATE TABLE tbl_user_search_json(id serial, user_info json);
- INSERT INTO tbl_user_search_json(user_info) SELECT row_to_json(user_ini) FROM user_ini;
- -- 生成的数据如下:
- postgres=# SELECT * FROM tbl_user_search_json LIMIT 1;
- id | user_info
- ----+------------------------------------------------------------------------------------------------
- 1 | {"id":1,"user_id":185716,"user_name":"mOuXBE","create_time":"2024-08-11T03:27:46.69352+08:00"}
- (1 row)
复制代码 使用全文检索查询表tbl_user_search_json的user_info字段中包含KTU89H字符的记录,如下所示:
- postgres=# SELECT * FROM tbl_user_search_json WHERE to_tsvector('english',user_info) @@ to_tsquery('ENGLISH','bb7tQk');
- id | user_info
- -----+---------------------------------------------------------------------------------------------------
- 100 | {"id":100,"user_id":640314,"user_name":"bb7tQk","create_time":"2024-08-11T03:27:46.694603+08:00"}
- (1 row)
- -- 执行计划
- EXPLAIN ANALYZE SELECT * FROM tbl_user_search_json WHERE to_tsvector('english',user_info) @@ to_tsquery('ENGLISH','bb7tQk');
- QUERY PLAN
- ---------------------------------------------------------------------------------------------------------------------------------------------
- Gather (cost=1000.00..127886.00 rows=5000 width=104) (actual time=1.415..2299.886 rows=1 loops=1)
- Workers Planned: 2
- Workers Launched: 2
- -> Parallel Seq Scan on tbl_user_search_json (cost=0.00..126386.00 rows=2083 width=104) (actual time=1522.099..2287.579 rows=0 loops=3)
- Filter: (to_tsvector('english'::regconfig, user_info) @@ '''bb7tqk'''::tsquery)
- Rows Removed by Filter: 333333
- Planning Time: 0.091 ms
- Execution Time: 2299.910 ms
- (8 rows)
复制代码 以上SQL能正常执行说明全文检索支持json数据类型,只是上述SQL走了全表扫描性能低,执行时间为2299毫秒
创建索引
- CREATE INDEX idx_gin_search_json ON tbl_user_search_json USING gin(to_tsvector('english',user_info));
复制代码 索引创建后,再次执行以下SQL,如下所示:
- EXPLAIN ANALYZE SELECT * FROM tbl_user_search_json WHERE to_tsvector('english',user_info) @@ to_tsquery('ENGLISH','bb7tQk');
- QUERY PLAN
- --------------------------------------------------------------------------------------------------------------------------------
- Bitmap Heap Scan on tbl_user_search_json (cost=62.75..12193.30 rows=5000 width=104) (actual time=0.046..0.047 rows=1 loops=1)
- Recheck Cond: (to_tsvector('english'::regconfig, user_info) @@ '''bb7tqk'''::tsquery)
- Heap Blocks: exact=1
- -> Bitmap Index Scan on idx_gin_search_json (cost=0.00..61.50 rows=5000 width=0) (actual time=0.024..0.024 rows=1 loops=1)
- Index Cond: (to_tsvector('english'::regconfig, user_info) @@ '''bb7tqk'''::tsquery)
- Planning Time: 0.439 ms
- Execution Time: 0.079 ms
- (7 rows)
复制代码 从上述执行计划看出走了索引,并且执行时间降为0.079毫秒,性能非常不错。
索引支持
jsonb缺省的GIN操作符类支持使用@>、?、?&和?|操作符查询
JSONB类型支持GIN, BTree索引。一样平常环境下,我们会在JSONB类型字段上建GIN索引,语法如下:
- CREATE INDEX idx_name ON table_name USING gin (idx_col);
- CREATE INDEX idx_name ON table_name USING gin (idx_col jsonb_path_ops);
复制代码 说明:在JSONB上创建GIN索引的方式有两种:使用默认的jsonb_ops操作符创建和使用jsonb_path_ops操作符创建。两者的区别在jsonb_ops的GIN索引中,JSONB数据中的每个key和value都是作为一个单独的索引项的,而jsonb_path_ops则只为每个value创建一个索引项。
JSON 函数索引
- CREATE TABLE test_json (json_type text,obj json);
- insert into test_json values
- ('aa', '{"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}'),
- ('cc', '{"f7":{"f3":1},"f8":{"f5":99,"f6":"foo"}}');
- select obj->'f2' from test_json where json_type = 'aa';
- ?column?
- ----------
- {"f3":1}
- (1 row)
- -- 创建函数索引
- create index i on test_json (json_extract_path_text(obj, 'f4'));
- select * from test_json where json_extract_path_text(obj, 'f4') = '{"f5":99,"f6":"foo"}';
- json_type | obj
- -----------+-------------------------------------------
- aa | {"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}
- (1 row)
复制代码 JSONB创建索引
- -- 创建测试表并生成数据
- CREATE TABLE test_t (id int,info json);
- -- 创建随机生成字符串函数
- create or replace function random_string(integer)
- returns text as
- $body$
- select array_to_string(array(select substring('0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' FROM (ceil(random()*62))::int FOR 1) FROM generate_series(1, $1)), '');
- $body$
- language sql volatile;
- -- 插入数据
- insert into test_t
- select t.seq, ('{"a":{"a1":"a1a1", "a2":"a2a2"}, "name":"'||random_string(10)||'","b":"bbbbb"}')::json
- from generate_series(1, 10000000) as t(seq);
- CREATE TABLE test_t2 (id int,info jsonb);
- CREATE TABLE test_t3 (id int,info jsonb);
- insert into test_t2 select id, info::jsonb from test_t;
- insert into test_t3 select id, info::jsonb from test_t;
- -- 建立索引
- CREATE INDEX idx_test2 ON test_t2 USING gin(info);
- CREATE INDEX idx_test3 ON test_t3 USING gin(info jsonb_path_ops);
- -- 未建索引执行
- EXPLAIN ANALYZE SELECT * FROM test_t where info::jsonb @> '{"name":"FMYYFF6I5O"}';
- QUERY PLAN
- -------------------------------------------------------------------------------------------------------------------------------
- Gather (cost=1000.00..207373.79 rows=100000 width=70) (actual time=2.398..6762.787 rows=1 loops=1)
- Workers Planned: 2
- Workers Launched: 2
- -> Parallel Seq Scan on test_t (cost=0.00..196373.79 rows=41667 width=70) (actual time=4496.908..6749.185 rows=0 loops=3)
- Filter: ((info)::jsonb @> '{"name": "FMYYFF6I5O"}'::jsonb)
- Rows Removed by Filter: 3333333
- Planning Time: 0.069 ms
- Execution Time: 6762.834 ms
- (8 rows)
- -- 使用jsonb_ops操作符创建索引执行
- EXPLAIN ANALYZE SELECT * FROM test_t2 where info @> '{"name":"FMYYFF6I5O"}';
- QUERY PLAN
- ----------------------------------------------------------------------------------------------------------------------
- Bitmap Heap Scan on test_t2 (cost=51.75..3802.38 rows=1000 width=88) (actual time=0.597..0.598 rows=1 loops=1)
- Recheck Cond: (info @> '{"name": "FMYYFF6I5O"}'::jsonb)
- Heap Blocks: exact=1
- -> Bitmap Index Scan on idx_test2 (cost=0.00..51.50 rows=1000 width=0) (actual time=0.432..0.432 rows=1 loops=1)
- Index Cond: (info @> '{"name": "FMYYFF6I5O"}'::jsonb)
- Planning Time: 3.766 ms
- Execution Time: 0.635 ms
- (7 rows)
- -- 使用jsonb_path_ops操作符创建索引执行
- postgres=# EXPLAIN ANALYZE SELECT * FROM test_t3 where info @> '{"name":"FMYYFF6I5O"}';
- QUERY PLAN
- ----------------------------------------------------------------------------------------------------------------------
- Bitmap Heap Scan on test_t3 (cost=31.75..3782.38 rows=1000 width=88) (actual time=0.401..0.402 rows=1 loops=1)
- Recheck Cond: (info @> '{"name": "FMYYFF6I5O"}'::jsonb)
- Heap Blocks: exact=1
- -> Bitmap Index Scan on idx_test3 (cost=0.00..31.50 rows=1000 width=0) (actual time=0.019..0.019 rows=1 loops=1)
- Index Cond: (info @> '{"name": "FMYYFF6I5O"}'::jsonb)
- Planning Time: 0.366 ms
- Execution Time: 0.437 ms
- (7 rows)
复制代码 JSONB性能分析
数据预备
- -- account 表 id 使用uuid 类型,需要先添加uuid-ossp模块。
- CREATE EXTENSION IF NOT EXISTS "uuid-ossp";
- -- create table
- create table account (id UUID NOT NULL PRIMARY KEY default uuid_generate_v1(), content jsonb, created_at timestamptz DEFAULT CURRENT_TIMESTAMP, updated_at timestamptz DEFAULT CURRENT_TIMESTAMP);
- postgres=> \d account
- Table "public.account"
- Column | Type | Collation | Nullable | Default
- --------------+--------------------------+-----------+----------+--------------------
- id | uuid | | not null |uuid_generate_v1()
- content | jsonb | | |
- created_at | timestamp with time zone | | | CURRENT_TIMESTAMP
- updated_at | timestamp with time zone | | | CURRENT_TIMESTAMP
- Indexes:
- "account_pkey" PRIMARY KEY, btree (id)
复制代码 content 数据布局为
- content = {
- "nickname": {"type": "string"},
- "avatar": {"type": "string"},
- "weixin": {"type": "string"},
- "tags": {"type": "array", "items": {"type": "string"}},
- }
复制代码 批量插入数据
- -- 插入100w条有 nickname avatar tags 为["python", "golang", "c"]的数据
- insert into account select uuid_generate_v1(), ('{"nickname": "nn-' || round(random()*20000000) || '", "avatar": "avatar_url", "tags": ["python", "golang", "c"]}')::jsonb from (select * from generate_series(1,100000)) as tmp;
- -- 插入100w条有 nickname tags 为["python", "golang"]的数据
- insert into account select uuid_generate_v1(), ('{"nickname": "nn-' || round(random()*2000000) || '", "tags": ["python", "golang"]}')::jsonb from (select * from generate_series(1,1000000)) as tmp;
- -- 插入100w条有 nickname tags 为["python"]的数据
- insert into account select uuid_generate_v1(), ('{"nickname": "nn-' || round(random()*2000000) || '", "tags": ["python"]}')::jsonb from (select * from generate_series(1,1000000)) as tmp;
复制代码 测试查询
content 中有avatar key 的数据条数 count(*) 查询不是一个好的测试语句,就算是有索引,也只能起到过滤的作用,如果结果集比力大,查询速度还是会很慢
- explain analyze select count(*) from account where content::jsonb ? 'avatar';
- QUERY PLAN
- ------------------------------------------------------------------------------------------------------------------------------------------
- Finalize Aggregate (cost=45210.65..45210.66 rows=1 width=8) (actual time=148.609..159.876 rows=1 loops=1)
- -> Gather (cost=45210.43..45210.64 rows=2 width=8) (actual time=148.390..159.864 rows=3 loops=1)
- Workers Planned: 2
- Workers Launched: 2
- -> Partial Aggregate (cost=44210.43..44210.44 rows=1 width=8) (actual time=136.871..136.872 rows=1 loops=3)
- -> Parallel Seq Scan on account (cost=0.00..44111.50 rows=39573 width=0) (actual time=0.038..134.372 rows=33333 loops=3)
- Filter: (content ? 'avatar'::text)
- Rows Removed by Filter: 666667
- Planning Time: 1.671 ms
- Execution Time: 159.937 ms
- (10 rows)
复制代码 content 中没有avatar key 的数据条数
- explain analyze select count(*) from account where content::jsonb ? 'avatar' = false;
- QUERY PLAN
- --------------------------------------------------------------------------------------------------------------------------------------------
- Finalize Aggregate (cost=47200.28..47200.29 rows=1 width=8) (actual time=206.111..217.322 rows=1 loops=1)
- -> Gather (cost=47200.07..47200.28 rows=2 width=8) (actual time=205.930..217.311 rows=3 loops=1)
- Workers Planned: 2
- Workers Launched: 2
- -> Partial Aggregate (cost=46200.07..46200.08 rows=1 width=8) (actual time=201.030..201.031 rows=1 loops=3)
- -> Parallel Seq Scan on account (cost=0.00..44111.50 rows=835427 width=0) (actual time=0.030..157.985 rows=666667 loops=3)
- Filter: (NOT (content ? 'avatar'::text))
- Rows Removed by Filter: 33333
- Planning Time: 0.112 ms
- Execution Time: 217.376 ms
- (10 rows)
复制代码 查询content 中nickname 为nn-194318的数据
- explain analyze select * from account where content @> '{"nickname": "nn-194318"}';
- QUERY PLAN
- --------------------------------------------------------------------------------------------------------------------------
- Gather (cost=1000.00..45132.50 rows=210 width=95) (actual time=197.300..208.413 rows=1 loops=1)
- Workers Planned: 2
- Workers Launched: 2
- -> Parallel Seq Scan on account (cost=0.00..44111.50 rows=88 width=95) (actual time=133.899..192.681 rows=0 loops=3)
- Filter: (content @> '{"nickname": "nn-194318"}'::jsonb)
- Rows Removed by Filter: 700000
- Planning Time: 0.206 ms
- Execution Time: 208.447 ms
- (8 rows)
复制代码 对应的查询id 为 ‘a830f154-5711-11ef-aac7-000c29d4de9c’ 的数据
- explain analyze select * from account where id='a830f154-5711-11ef-aac7-000c29d4de9c';
- QUERY PLAN
- -----------------------------------------------------------------------------------------------------------------------
- Index Scan using account_pkey on account (cost=0.43..8.45 rows=1 width=95) (actual time=0.029..0.031 rows=1 loops=1)
- Index Cond: (id = 'a830f154-5711-11ef-aac7-000c29d4de9c'::uuid)
- Planning Time: 0.089 ms
- Execution Time: 0.059 ms
- (4 rows)
复制代码 通过结果可以看到 使用 jsonb 查询和使用主键查询速度差异巨大,通过看查询分析记录可以看到,这两个语句最大的差异在于使用主键的查询用到了索引,而content nickname 的查询没有索引可以使用。 接下来测试一下使用索引时的查询速度。
索引
JSONB 最常用的是GIN 索引,GIN 索引可以被用来有用地搜索在大量jsonb文档(数据)中出现 的键大概键值对。
jsonb的默认 GIN 操作符类支持使用顶层键存在运算符?、?&以及?| 操作符和路径/值存在运算符@>的查询。
创建默认索引
- CREATE INDEX idxgin ON account USING GIN (content);
- create table account (id UUID NOT NULL PRIMARY KEY default uuid_generate_v1(), content jsonb, created_at timestamptz DEFAULT CURRENT_TIMESTAMP, updated_at timestamptz DEFAULT CURRENT_TIMESTAMP);
复制代码 非默认的 GIN 操作符类jsonb_path_ops只支持索引@>操作符。
- -- 创建指定路径的索引
- CREATE INDEX idxginp ON account USING GIN (content jsonb_path_ops);
复制代码 查询优化
创建默认索引
- -- 创建简单索引
- create index ix_account_content on account USING GIN (content);
复制代码 现在下面这样的查询就能使用该索引:
- -- content 中有avatar key 的数据条数
- explain analyze select count(*) from account where content::jsonb ? 'avatar';
- QUERY PLAN
- --------------------------------------------------------------------------------------------------------------------------------------------
- Aggregate (cost=35490.68..35490.69 rows=1 width=8) (actual time=42.619..42.621 rows=1 loops=1)
- -> Bitmap Heap Scan on account (cost=892.06..35253.24 rows=94975 width=0) (actual time=8.532..36.016 rows=100000 loops=1)
- Recheck Cond: (content ? 'avatar'::text)
- Heap Blocks: exact=2041
- -> Bitmap Index Scan on ix_account_content (cost=0.00..868.31 rows=94975 width=0) (actual time=8.217..8.218 rows=100000 loops=1)
- Index Cond: (content ? 'avatar'::text)
- Planning Time: 0.495 ms
- Execution Time: 42.752 ms
- (8 rows)
复制代码 和之前没有添加索引时速度提拔了3倍。
- -- 查询content 中nickname 为nn-194318的数据
- explain analyze select * from account where content@>'{"nickname": "nn-194318"}';
- QUERY PLAN
- ------------------------------------------------------------------------------------------------------------------------------
- Bitmap Heap Scan on account (cost=37.63..830.13 rows=210 width=95) (actual time=0.109..0.110 rows=1 loops=1)
- Recheck Cond: (content @> '{"nickname": "nn-194318"}'::jsonb)
- Heap Blocks: exact=1
- -> Bitmap Index Scan on ix_account_content (cost=0.00..37.58 rows=210 width=0) (actual time=0.098..0.099 rows=1 loops=1)
- Index Cond: (content @> '{"nickname": "nn-194318"}'::jsonb)
- Planning Time: 0.140 ms
- Execution Time: 0.147 ms
- (7 rows)
复制代码 这个查询效率提拔更显着,竟然比使用主键还要高效。
但是下面这种查询并不能使用索引:
- -- 查询content 中不存在 avatar key 的数据条数
- explain analyze select count(*) from account where content::jsonb ? 'avatar' = false;
- QUERY PLAN
- --------------------------------------------------------------------------------------------------------------------------------------------
- Finalize Aggregate (cost=47200.28..47200.29 rows=1 width=8) (actual time=221.257..232.061 rows=1 loops=1)
- -> Gather (cost=47200.07..47200.28 rows=2 width=8) (actual time=221.052..232.049 rows=3 loops=1)
- Workers Planned: 2
- Workers Launched: 2
- -> Partial Aggregate (cost=46200.07..46200.08 rows=1 width=8) (actual time=215.582..215.583 rows=1 loops=3)
- -> Parallel Seq Scan on account (cost=0.00..44111.50 rows=835427 width=0) (actual time=0.033..170.202 rows=666667 loops=3)
- Filter: (NOT (content ? 'avatar'::text))
- Rows Removed by Filter: 33333
- Planning Time: 0.120 ms
- Execution Time: 232.136 ms
- (10 rows)
复制代码 该索引也不能被用于下面这样的查询,因为只管操作符? 是可索引的,但它不能直接被应用于被索引列content:
- explain analyze select count(1) from account where content -> 'tags' ? 'c';
- QUERY PLAN
- -----------------------------------------------------------------------------------------------------------------------------------------
- Finalize Aggregate (cost=47321.09..47321.10 rows=1 width=8) (actual time=185.699..196.680 rows=1 loops=1)
- -> Gather (cost=47320.88..47321.08 rows=2 width=8) (actual time=185.500..196.670 rows=3 loops=1)
- Workers Planned: 2
- Workers Launched: 2
- -> Partial Aggregate (cost=46320.88..46320.89 rows=1 width=8) (actual time=180.745..180.747 rows=1 loops=3)
- -> Parallel Seq Scan on account (cost=0.00..46299.00 rows=8750 width=0) (actual time=0.030..178.474 rows=33333 loops=3)
- Filter: ((content -> 'tags'::text) ? 'c'::text)
- Rows Removed by Filter: 666667
- Planning Time: 0.108 ms
- Execution Time: 196.751 ms
- (10 rows)
复制代码 使用表达式索引
- -- 创建路径索引
- create index ix_account_content_tags on account USING GIN ((content->'tags'));
- -- 测试查询性能
- explain analyze select count(1) from account where content -> 'tags' ? 'c';
- QUERY PLAN
- -------------------------------------------------------------------------------------------------------------------------------------------------
- Aggregate (cost=31745.00..31745.01 rows=1 width=8) (actual time=49.878..49.880 rows=1 loops=1)
- -> Bitmap Heap Scan on account (cost=754.75..31692.50 rows=21000 width=0) (actual time=8.473..43.123 rows=100000 loops=1)
- Recheck Cond: ((content -> 'tags'::text) ? 'c'::text)
- Heap Blocks: exact=2041
- -> Bitmap Index Scan on ix_account_content_tags (cost=0.00..749.50 rows=21000 width=0) (actual time=8.138..8.138 rows=100000 loops=1)
- Index Cond: ((content -> 'tags'::text) ? 'c'::text)
- Planning Time: 0.251 ms
- Execution Time: 49.934 ms
- (8 rows)
复制代码 现在,WHERE 子句content -> 'tags' ? 'c' 将被辨认为可索引操作符?在索引表达式content -> 'tags' 上的应用。
也可以使用包含查询的方式,例如:
- -- 查寻 "tags" 包含数组元素 "c" 的数据的个数
- explain analyze select count(1) from account where content @> '{"tags": ["c"]}';
- QUERY PLAN
- ----------------------------------------------------------------------------------------------------------------------------------------------
- Aggregate (cost=35506.68..35506.69 rows=1 width=8) (actual time=68.712..68.714 rows=1 loops=1)
- -> Bitmap Heap Scan on account (cost=908.06..35269.24 rows=94975 width=0) (actual time=11.153..61.405 rows=100000 loops=1)
- Recheck Cond: (content @> '{"tags": ["c"]}'::jsonb)
- Heap Blocks: exact=2041
- -> Bitmap Index Scan on ix_account_content (cost=0.00..884.31 rows=94975 width=0) (actual time=10.838..10.838 rows=100000 loops=1)
- Index Cond: (content @> '{"tags": ["c"]}'::jsonb)
- Planning Time: 0.257 ms
- Execution Time: 68.777 ms
- (8 rows)
复制代码 content 列上的简朴 GIN 索引(默认索引)就能支持索引查询。 但是索引将会存储content列中每一个键 和值的拷贝,表达式索引只存储tags 键下找到的数据。
固然简朴索引的方法更加机动(因为它支持有关任意键的查询),但定向的表达式索引更小并且搜索速度比简朴索引更快。 只管jsonb_path_ops操作符类只支持用 @>操作符的查询,但它比起默认的操作符类 jsonb_ops有更客观的性能上风。一个 jsonb_path_ops索引通常也比一个相同数据上的 jsonb_ops要小得多,并且搜索的专一性更好,特 别是当查询包含频繁出现在该数据中的键时。因此,其上的搜索操作 通常比使用默认操作符类的搜索表现更好。
总结
- PG 有两种 JSON 数据类型:json 和 jsonb,jsonb 性能优于json,且jsonb 支持索引。
- jsonb 写入时会处理写入数据,写入相对较慢,json会保留原始数据(包罗无用的空格)
- jsonb 查询优化时一个好的方式是添加GIN 索引
- 简朴索引和路径索引相比更机动,但是占用空间多
- 路径索引比简朴索引更高效,占用空间更小
PostgreSQL json 索引实践 - 检索(存在、包含、等值、范围等)加速
配景
用户在使用JSON类型时,常见的一些JSON搜索包罗:
1、存在,JSON中是否存在某个KEY,某些KEY,某些KEY的任意一个
- -- 存在某个KEY(TOP LEVEL)
- '{"a":1, "b":2}'::jsonb ? 'b'
- -- 存在所有KEY
- '{"a":1, "b":2, "c":3}'::jsonb ?& array['b', 'c']
- -- 存在任意key、元素
- '["a", "b"]'::jsonb ?| array['a', 'b']
复制代码 2、等值,JSON中是否存在指定的key:value对(支持嵌套JSON)
- '{"a":1, "b":2}'::jsonb @> '{"b":2}'::jsonb
复制代码 3、包含,JSON中某个路径下的VALUE(数组)中,是否包含指定的所有元素。
- postgres=# select jsonb '{"a":1, "b": {"c":[1,2,3], "d":["k","y","z"]}, "d":"kbc"}' @> '{"b":{"c":[2,3]}}';
- ?column?
- ----------
- t
- (1 row)
复制代码 4、相交,JSON中某个路径下的VALUE(数组)中,是否包含指定的任意元素。
- postgres=# select jsonb '{"a":1, "b": {"c":[1,2,3], "d":["k","y","z"]}, "d":"kbc"}' @> '{"b":{"c":[2]}}' or jsonb '{"a":1, "b": {"c":[1,2,3], "d":["k","y","z"]}, "d":"kbc"}' @> '{"b":{"c":[3]}}';
- ?column?
- ----------
- t
- (1 row)
复制代码 或(注意1,2,3必要双引号,作为text类型存储,因为操作符?| ?&临时只支持了text[],如果是numeric匹配不上)
- postgres=# select jsonb '{"a":1, "b": {"c":["1","2","3"], "d":["k","y","z"]}, "d":"kbc"}' -> 'b' -> 'c' ?& array['2','3','4'];
- ?column?
- ----------
- f
- (1 row)
- postgres=# select jsonb '{"a":1, "b": {"c":["1","2","3"], "d":["k","y","z"]}, "d":"kbc"}' -> 'b' -> 'c' ?| array['2','3','4'];
- ?column?
- ----------
- t
- (1 row)
复制代码 5、范围查找,JSON中某个路径下的VALUE,是否落在某个范围内。
- (js ->> 'key1' )::numeric between xx and xx
-
- (js ->> 'key2' )::numeric between xx and xx
复制代码 这些操作如何加速,大概如何使用索引加速?
一、json 索引支持
GIN的两个OPS,分别支持JSON:
The default GIN operator class for jsonb supports queries with top-level key-exists operators ?, ?& and ?|operators and path/value-exists operator @>.
The non-default GIN operator class jsonb_path_ops supports indexing the @> operator only.
1、支持 @> 操作符的索引如下(jsonb_path_ops只支持 @> 操作符,但是效率高)
- postgres=# create table tbl(id int, js jsonb);
- CREATE TABLE
- postgres=# create index idx_tbl_1 on tbl using gin (js jsonb_path_ops);
- CREATE INDEX
复制代码 2、支持除范围查询以外的所有查询的索引如下
- postgres=# create table tbl(id int, js jsonb);
- CREATE TABLE
- postgres=# create index idx_tbl_1 on tbl using gin (js); -- 使用默认ops即可
- CREATE INDEX
复制代码 二、JSON KEY VALUE值范围查询加速
某些使用,必要对VALUE使用范围查询,比如时间(如果要建索引,请使用numeric表示,否则必要自定义immutable函数),数值都有这些需求。
通常的做法,把范围查询的类型提取出来,创建btree表达式索引,如果有任意组合的范围查询,使用gin或rum表达式索引。
例子
- create index idx1 on tbl ( ((js->>'k1')::float8) );
- create index idx2 on tbl ( ((js->>'k2')::numeric) );
- ...
- create index idxn on tbl ( ((js->>'kn')::float8) );
复制代码 或
- create extension btree_gin;
- create index idx1 on tbl using gin( ((js->>'k1')::float8), ((js->>'k2')::numeric), ... ((js->>'kn')::float8) );
复制代码 或
- create extension rum;
- create index idx1 on tbl using rum( ((js->>'k1')::float8), ((js->>'k2')::numeric), ... ((js->>'kn')::float8) );
复制代码 或
- create or replace function to_timestamp(text) returns timestamp as $$
- select $1::timestamp;
- $$ language sql strict immutable;
-
-
- create index idx1 on tbl using gin( ((js->>'k1')::float8), to_timestamp(js->>'k2'), ... ((js->>'kn')::float8) );
- -- 或
- create index idx1 on tbl using rum( ((js->>'k1')::float8), to_timestamp(js->>'k2'), ... ((js->>'kn')::float8) );
复制代码 三、索引使用例子
rum插件说明
- #代码仓
- https://github.com/postgrespro/rum/releases
- $ git clone https://github.com/postgrespro/rum
- $ cd rum
- $ make USE_PGXS=1
- $ make USE_PGXS=1 install
- $ make USE_PGXS=1 installcheck
- $ psql DB -c "CREATE EXTENSION rum;"
复制代码 创建测试表和索引
- create or replace function to_timestamp(text) returns timestamp as $$
- select $1::timestamp;
- $$ language sql strict immutable;
- create table tbl(id int, js jsonb);
- create index idx_tbl_1 on tbl using gin (js jsonb_path_ops);
- create index idx_tbl_2 on tbl using gin (js);
- create index idx_tbl_3 on tbl using rum( ((js->>'k1')::float8), to_timestamp(js->>'k2'), ((js->>'k3')::numeric) );
复制代码 ? 操作符,匹配JSON对象中的键走索引:
- postgres=# explain analyze select * from tbl where js ? 'a';
- QUERY PLAN
- ------------------------------------------------------------------------------------------------------------------
- Bitmap Heap Scan on tbl (cost=8.01..12.02 rows=1 width=36) (actual time=0.031..0.033 rows=0 loops=1)
- Recheck Cond: (js ? 'a'::text)
- -> Bitmap Index Scan on idx_tbl_2 (cost=0.00..8.01 rows=1 width=0) (actual time=0.023..0.025 rows=0 loops=1)
- Index Cond: (js ? 'a'::text)
- Planning Time: 0.581 ms
- Execution Time: 0.133 ms
- (6 rows)
复制代码 @> 操作符,匹配JSON对象中的键值对走索引:
- postgres=# explain analyze select * from tbl where js @> '{"a":"b"}';
- QUERY PLAN
- ------------------------------------------------------------------------------------------------------------------
- Bitmap Heap Scan on tbl (cost=8.01..12.02 rows=1 width=36) (actual time=0.017..0.017 rows=0 loops=1)
- Recheck Cond: (js @> '{"a": "b"}'::jsonb)
- -> Bitmap Index Scan on idx_tbl_1 (cost=0.00..8.01 rows=1 width=0) (actual time=0.014..0.014 rows=0 loops=1)
- Index Cond: (js @> '{"a": "b"}'::jsonb)
- Planning Time: 0.132 ms
- Execution Time: 0.046 ms
- (6 rows)
复制代码 @> 操作符,嵌套数组使用索引
- postgres=# select * from tbl where js @> '{"a": {"b":"c"}}'; id | js ----+----(0 rows)SELECT doc->'site_name' FROM websites WHERE doc->'tags' @> '[{"term":"paris"}, {"term":"food"}]'; postgres=# select jsonb '{"a":1, "b": {"c":[1,2,3], "d":["k","y","z"]}, "d":"kbc"}'; jsonb ------------------------------------------------------------------- {"a": 1, "b": {"c": [1, 2, 3], "d": ["k", "y", "z"]}, "d": "kbc"}(1 row)postgres=# select jsonb '{"a":1, "b": {"c":[1,2,3], "d":["k","y","z"]}, "d":"kbc"}' @> '{"b":{"c":[2,3]}}';
- ?column?
- ----------
- t
- (1 row)
- postgres=# select jsonb '{"a":1, "b": {"c":[1,2,3], "d":["k","y","z"]}, "d":"kbc"}' @> '{"b":{"c":[2,4]}}'; ?column? ---------- f(1 row)postgres=# explain analyze select * from tbl where js @> '{"b":{"c":[2,4]}}'; QUERY PLAN ------------------------------------------------------------------------------------------------------------------- Bitmap Heap Scan on tbl (cost=12.01..16.02 rows=1 width=36) (actual time=0.012..0.013 rows=0 loops=1) Recheck Cond: (js @> '{"b": {"c": [2, 4]}}'::jsonb) -> Bitmap Index Scan on idx_tbl_1 (cost=0.00..12.01 rows=1 width=0) (actual time=0.010..0.010 rows=0 loops=1) Index Cond: (js @> '{"b": {"c": [2, 4]}}'::jsonb) Planning Time: 0.111 ms Execution Time: 0.041 ms(6 rows)
复制代码 rum扩展将键的文本值转为timestamp类型,范围查询走索引:
- explain analyze select * from tbl where to_timestamp(js->>'k2') between '2018-01-01' and '2018-01-02';
- QUERY PLAN
-
- ------------------------------------------------------------------------------------------------------------------------------------------------
- ---------------------------------------------------------------
- Bitmap Heap Scan on tbl (cost=24.07..36.58 rows=6 width=36) (actual time=0.040..0.041 rows=0 loops=1)
- Recheck Cond: ((to_timestamp((js ->> 'k2'::text)) >= '2018-01-01 00:00:00'::timestamp without time zone) AND (to_timestamp((js ->> 'k2'::text
- )) <= '2018-01-02 00:00:00'::timestamp without time zone))
- -> Bitmap Index Scan on idx_tbl_3 (cost=0.00..24.06 rows=6 width=0) (actual time=0.037..0.037 rows=0 loops=1)
- Index Cond: ((to_timestamp((js ->> 'k2'::text)) >= '2018-01-01 00:00:00'::timestamp without time zone) AND (to_timestamp((js ->> 'k2'::
- text)) <= '2018-01-02 00:00:00'::timestamp without time zone))
- Planning Time: 0.569 ms
- Execution Time: 0.090 ms
- (6 rows)
- explain analyze select * from tbl where to_timestamp(js->>'k2') between '2018-01-01' and '2018-01-02' and ((js->>'k3')::numeric) between 1 and 200;
-
- QUERY PLAN
-
- ------------------------------------------------------------------------------------------------------------------------------------------------
- ------------------------------------------------------------------------------------------------------------------------------------------------
- ---------------------
- Index Scan using idx_tbl_3 on tbl (cost=36.00..44.01 rows=1 width=36) (actual time=0.033..0.034 rows=0 loops=1)
- Index Cond: ((to_timestamp((js ->> 'k2'::text)) >= '2018-01-01 00:00:00'::timestamp without time zone) AND (to_timestamp((js ->> 'k2'::text))
- <= '2018-01-02 00:00:00'::timestamp without time zone) AND (((js ->> 'k3'::text))::numeric >= '1'::numeric) AND (((js ->> 'k3'::text))::numeric
- <= '200'::numeric))
- Planning Time: 0.299 ms
- Execution Time: 0.062 ms
- (4 rows)
复制代码 参考资料
官方文档:
https://www.postgresql.org/docs/current/functions-json.html
https://www.postgresql.org/docs/current/datatype-json.html
PostgreSQL JSON数据类型
https://blog.csdn.net/neweastsun/article/details/93345799
PostgreSQL JSON类型字段常用操作
https://blog.csdn.net/wilsonpeng3/article/details/128677263
JSON & JSONB 数据类型操作
https://help.aliyun.com/zh/analyticdb-for-postgresql/developer-reference/operations-of-json-data
PostgreSQL JSONB 使用入门
https://cloud.tencent.com/developer/article/1763846
PostgreSQL高级数据类型JSON和JSONB
https://bbs.huaweicloud.com/blogs/363682
https://emacsist.github.io/2016/10/09/postgresql中的json与jsonb/
PostgreSQL JSON函数和操作符
https://www.w3cschool.cn/postgresql13_1/postgresql13_1-n3ha3jbh.html
PostgreSQL操作JSON数据
https://blog.51cto.com/u_14441472/10771220
PostgreSQL json 索引实践 - 检索(存在、包含、等值、范围等)加速
https://billtian.github.io/digoal.blog/2018/07/31/01.html
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |