一、图论题目 Ⅲ
1、淹没孤岛
这题只能从边界开始扩散,将靠近边界的陆地标志,表示不是孤岛,最后将孤岛淹没,将不是孤岛标志回陆地。
- # include<iostream>
- # include<vector>
- using namespace std;
- void dfs(vector<vector<int>> &graph, int i, int j){
- if(i<0 || i>=graph.size() || j<0 || j>=graph[0].size() || graph[i][j]!=1)
- return;
- graph[i][j] = 2;
- dfs(graph, i+1, j);
- dfs(graph, i-1, j);
- dfs(graph, i, j+1);
- dfs(graph, i, j-1);
- }
- int main(){
- int n, m;
- cin >> n >> m;
- vector<vector<int>> graph(n, vector<int>(m));
- for(int i=0; i<n; ++i)
- for(int j=0; j<m; ++j)
- cin >> graph[i][j];
-
- // 步骤一:
- // 从左侧边,和右侧边 向中间遍历
- for (int i = 0; i < n; i++) {
- if (graph[i][0] == 1) dfs(graph, i, 0);
- if (graph[i][m - 1] == 1) dfs(graph, i, m - 1);
- }
- // 从上边和下边 向中间遍历
- for (int j = 0; j < m; j++) {
- if (graph[0][j] == 1) dfs(graph, 0, j);
- if (graph[n - 1][j] == 1) dfs(graph, n - 1, j);
- }
- for (int i = 0; i < n; i++) {
- for (int j = 0; j < m; j++) {
- if (graph[i][j] == 1) graph[i][j] = 0;
- if (graph[i][j] == 2) graph[i][j] = 1;
- }
- }
- for (int i = 0; i < n; i++) {
- for (int j = 0; j < m; j++) {
- cout << graph[i][j] << " ";
- }
- cout << endl;
- }
- return 0;
- }
复制代码 2、水流题目
如果想着从当前点向两个边界移动的话,时间复杂度过高,因为需要遍历每个点,每个点又需要扩散到两个边界。如果我们逆向思维,想着从边界出发去找可达的点,这一下就豁然开朗了。
- # include<iostream>
- # include<vector>
- using namespace std;
- vector<vector<int>> dirs = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
- void dfs(vector<vector<int>> &graph, vector<vector<bool>> &vis,int ii, int jj){
- if(vis[ii][jj])
- return;
- vis[ii][jj] = true;
- for(auto xy : dirs){
- int i = ii + xy[0], j = jj + xy[1];
- if(i<0 || i>=graph.size() || j<0 || j>=graph[0].size() || graph[ii][jj] > graph[i][j] || vis[i][j])
- continue;
- dfs(graph, vis, i, j);
- }
- }
- int main(){
- int n, m;
- cin >> n >> m;
- vector<vector<int>> graph(n, vector<int>(m));
- for(int i=0; i<n; ++i)
- for(int j=0; j<m; ++j)
- cin >> graph[i][j];
-
- vector<vector<bool>> vis1(n, vector<bool>(m, false));
- vector<vector<bool>> vis2(n, vector<bool>(m, false));
-
- for(int i=0; i<n; ++i){
- dfs(graph, vis1, i, 0);
- dfs(graph, vis2, i, m-1);
- }
- for(int i=0; i<m; ++i){
- dfs(graph, vis1, 0, i);
- dfs(graph, vis2, n-1, i);
- }
- for(int i=0; i<n; ++i){
- for(int j=0; j<m; ++j){
- if(vis1[i][j] && vis2[i][j])
- cout << i << " " << j << endl;
- }
- }
- return 0;
- }
复制代码 3、建造最大岛屿
写了个很不优雅的代码,思路是 DFS遍历陆地,给每个岛屿一一对应的编号,并用哈希表记载编号与岛屿面积的对应关系。然后,第二次遍历图,碰到水域,遍历水域的四个方向上的编号,举行面积聚加,一个细节是需要用set举行去重,可能四个反向上存在编号雷同的区域。
- # include<iostream>
- # include<vector>
- # include<unordered_map>
- # include<unordered_set>
- using namespace std;
- int dfs(vector<vector<int>> &graph, int i, int j, int num){
- if(i<0 || i>=graph.size() || j<0 || j>=graph[0].size() || graph[i][j]!=1)
- return 0;
- graph[i][j] = num;
- return 1 + dfs(graph, i+1, j, num)+ dfs(graph, i-1, j, num)+ dfs(graph, i, j+1, num)+ dfs(graph, i, j-1, num);
- }
- int main(){
- int n, m;
- cin >> n >> m;
- vector<vector<int>> graph(n, vector<int>(m));
- for(int i=0; i<n; ++i)
- for(int j=0; j<m; ++j)
- cin >> graph[i][j];
- unordered_map<int, int> mp; // 映射几号陆地 与 其面积关系
- mp[0] = 0;
- int idx = 2; // 几号陆地
- int ans = 0;
- for(int i=0; i<n; ++i){
- for(int j=0; j<m; ++j){
- if(graph[i][j]==1){
- mp[idx] = dfs(graph, i, j, idx);
- ans = max(ans, mp[idx]);
- ++idx;
- }
- }
- }
- vector<vector<int>> dirs = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
- for(int i=0; i<n; ++i){
- for(int j=0; j<m; ++j){
- if(graph[i][j]==0){
- int tmp = 1;
- unordered_set<int> set;
- for(auto xy : dirs){
- int x = i + xy[0], y = j + xy[1];
- if(x>=0 && x<n && y>=0 && y<m && set.find(graph[x][y])==set.end()){
- set.insert(graph[x][y]);
- tmp += mp[graph[x][y]];
- }
- }
- ans = max(ans, tmp);
- }
- }
- }
- cout << ans << endl;
-
- return 0;
- }
复制代码 免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |