pandas plot函数:数据可视化的快捷通道

打印 上一主题 下一主题

主题 882|帖子 882|积分 2646

一般来说,我们先用pandas分析数据,然后用matplotlib之类的可视化库来显示分析结果。
而pandas库中有一个强大的工具--plot函数,可以使数据可视化变得简单而高效。
1. plot 函数简介

plot函数是pandas中用于数据可视化的一个重要工具,
通过plot函数,可以轻松地将DataFrame或Series对象中的数据以图形的情势展示出来。
plot函数支持多种类型的图形,包括折线图、柱状图、散点图、饼图等,这些不同类型的图形适用于不同的数据分析场景。
别的,plot函数还支持通过参数设置来调解图形的样式,如颜色、标签、图例等,以满足更加个性化的可视化需求。
plot函数的参数名称和含义了matplotlib绘图时的参数是雷同的,
如果认识matplotlib绘图的话,上手更快。
2. 数据准备

下面的示例中利用的数据采集自A股2024年1月和2月的真实生意业务数据。
数据下载地址:https://databook.top/。
导入数据:
  1. import pandas as pd
  2. import matplotlib.pyplot as plt
  3. fp = r'D:\data\2024\历史行情数据-不复权-2024.csv'
  4. df = pd.read_csv(fp)
  5. df = df.loc[:, ["股票代码", "日期", "开盘", "收盘", "最高", "最低", "成交量"]]
  6. df
复制代码

3. 利用示例

针对上面的生意业务数据,下面演示如何用plot函数快速绘图。
3.1. 折线图

折线图一般用于展示时间序列数据,可以提取某一支股票的数据并绘制出来。
  1. # 提取870299这支股票
  2. data = df.query("股票代码==870299")
  3. data.index = data["日期"]
  4. # 绘制每天最高价和最低价的曲线
  5. data.loc[:, ["最高", "最低"]].plot(kind="line", title="股票870299", rot=45)
  6. plt.show()
复制代码

代码中有几个注意点:

  • data.index = data["日期"]:plot函数将索引列作为横轴,所以这里设置日期列为索引(index)
  • kind参数:设置图形的类型,这里设置line,体现折线图
  • title参数:设置图形的标题
  • rot参数:调解刻度的角度,这里将X轴的刻度旋转了45度,防止日期之间的重叠
3.2. 柱状图

柱状图多用于比对数据,下面我们用pandas挑选几支股票,然后比对它们的开盘价收盘价的平均值。
  1. # 随便挑选一些股票代码
  2. codes = [870299, 301138, 603825, 600579, 600640]
  3. data = df.loc[:,["股票代码", "开盘", "收盘"]].query("股票代码==@codes")
  4. # groupby之后,绘制各个股票开盘价和收盘价的平均值
  5. data.groupby(by=["股票代码"]).mean().plot(kind="bar")
  6. plt.show()
复制代码

代码中的注意点:

  • kind参数:设置图形的类型,这里设置bar,体现柱状图
  • groupby之后,"股票代码"变为索引列,所以绘图时作为横轴
如果要绘制横向的柱状图,只要把kind参数设置成barh即可。
  1. data.groupby(by=["股票代码"]).mean().plot(kind="barh")
复制代码

3.3. 饼图

饼图是另一种比较数据的方式,它可以比较数据之间的占比,更好的看出各种数据的分布情况。
下面也随机挑选一些股票,用饼图比较它们的成交量情况。
  1. codes = [870299, 301138, 603825, 600579, 600640]
  2. data = df.loc[:,["股票代码", "成交量"]].query("股票代码==@codes")
  3. data.groupby(by=["股票代码"]).sum()["成交量"].plot(kind="pie", autopct="%1.1f%%")
  4. plt.show()
复制代码

代码中的注意点:

  • kind参数:设置图形的类型,这里设置饼图pie,体现饼图
  • autopct参数:各个区域所占百分比的显示方式
3.4. 其他...

除了上面常用的图形,plot函数还支持其他多种图形,其kind参数目前支持的图形包括:

  • line : 折线图
  • bar : 柱状图
  • barh : 横向柱状图
  • hist : 直方图
  • box : 箱型图
  • kde : 核密度估计图
  • area : 面积图
  • pie : 饼图
  • scatter : 散点图
  • hexbin : 六边形箱图
4. 总结

总的来说,plot函数为数据分析师提供了一个强大而灵活的数据可视化工具。
通过plot函数,我们可以快速地将数据转化为直观的图形,从而更好地理解数据的分布、趋势和关系。
这种直观的理解有助于我们发现数据中的潜伏模式,进而做出更加准确和有效的决策。
无论是初学者还是资深的数据分析师,都可以通过掌握plot函数来提拔自己的数据分析能力。

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

x
回复

使用道具 举报

0 个回复

倒序浏览

快速回复

您需要登录后才可以回帖 登录 or 立即注册

本版积分规则

万有斥力

金牌会员
这个人很懒什么都没写!

标签云

快速回复 返回顶部 返回列表