在MATLAB中实现一个智能小车的路径规划系统,我们可以采用多种方法,包罗基于图的搜刮算法(如A算法)、基于采样的方法(如RRT - Rapidly-exploring Random Trees)、或者更复杂的基于优化的方法(如模型猜测控制MPC)。这里,我将以AI算法为例,展示怎样在MATLAB中实现一个简朴的路径规划系统。
步骤 1: 预备环境
起首,我们必要界说小车的运行环境,这通常是一个二维的网格图。每个网格可以是可通行的或不可通行的。
| % 创建一个简朴的网格图 | | gridSize = 50; | | grid = zeros(gridSize); | | % 设置障碍 | | grid(10:15, 10:15) = 1; | | grid(30:35, 30:35) = 1; | | | | % 显示网格 | | figure; | | imagesc(grid); | | colormap([1 1 1; 0 0 0]); % 白色为可行走,黑色为障碍 | | axis equal; | | axis image; | | grid on; | | hold on; | 步骤 2: 实现AI算法
AI算法是一种开导式搜刮算法,它团结了最好优先搜刮和Dijkstra算法的优点。我们必要界说开导式函数(如曼哈顿距离或欧几里得距离)来评估节点到尽头的距离。
| function [path, cost] = astar(start, goal, grid) | | % 初始化 | | openSet = containers.Map('KeyType', 'any', 'ValueType', 'any'); | | openSet(num2str(start)) = struct('f', 0, 'g', 0, 'parent', [], 'x', start(1), 'y', start(2)); | | closedSet = containers.Map('KeyType', 'any', 'ValueType', 'logical', 'DefaultValue', false); | | | | % 开导式函数(曼哈顿距离) | | heuristic = @(x1, y1, x2, y2) abs(x1 - x2) + abs(y1 - y2); | | | | % 主循环 | | while ~isempty(openSet) | | % 查找F值最小的节点 | | [~, currentIdx] = min(arrayfun(@(k) openSet(k).f, keys(openSet))); | | current = openSet(num2str(currentIdx)); | | | | % 假如到达目的 | | if current.x == goal(1) && current.y == goal(2) | | path = backtrack(current, goal); | | return; | | end | | | | % 扩展节点 | | [x, y] = ndgrid(current.x-1:current.x+1, current.y-1:current.y+1); | | x = x(; | | y = y(; | | validMoves = (x >= 1 & x <= size(grid, 1) & y >= 1 & y <= size(grid, 2) & grid(x, y) == 0); | | | | for i = validMoves | | neighbor = [x(i), y(i)]; | | tentativeGScore = current.g + 1; | | | | if ~closedSet(num2str(neighbor)) || tentativeGScore < openSet(num2str(neighbor)).g | | openSet(num2str(neighbor)) = struct(... | | 'f', tentativeGScore + heuristic(neighbor(1), neighbor(2), goal(1), goal(2)), ... | | 'g', tentativeGScore, ... | | 'parent', currentIdx, ... | | 'x', neighbor(1), ... | | 'y', neighbor(2)); | | end | | end | | | | % 移除当前节点 | | closedSet(num2str(currentIdx)) = true; | | remove(openSet, num2str(currentIdx)); | | end | | | | % 假如找不到路径 | | path = []; | | cost = inf; | | end | | | | function path = backtrack(current, goal) | | if isempty(current.parent) | | path = [goal;]; | | else | | path = backtrack(openSet(num2str(current.parent)), goal); | | path = [current.x, current.y; path]; | | end | | end | 步骤 3: 调用AI算法并显示路径
| start = [1, 1]; | | goal = [45, 45]; | | [path, cost] = astar(start, goal, grid); | | | | % 绘制 |
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |