1--媒介
以论文《High-Resolution Image Synthesis with Latent Diffusion Models》 开源的项目为例,剖析Stable Diffusion经典组成部分,巩固学习加深印象。
2--UNetModel
一个可以debug的小demo:SD_UNet
以文生图为例,剖析UNetModel核心组成模块。
2-1--Forward统辖
提供的文生图Demo中,实际传入的参数只有x、timesteps和context三个,此中:
x 表现随机初始化的噪声Tensor(shape: [B*2, 4, 64, 64],*2表现利用Classifier-Free Diffusion Guidance)。
timesteps 表现去噪过程中每一轮传入的timestep(shape: [B*2])。
context表现颠末CLIP编码后对应的文本Prompt(shape: [B*2, 77, 768])。
- def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
- """
- Apply the model to an input batch.
- :param x: an [N x C x ...] Tensor of inputs.
- :param timesteps: a 1-D batch of timesteps.
- :param context: conditioning plugged in via crossattn
- :param y: an [N] Tensor of labels, if class-conditional.
- :return: an [N x C x ...] Tensor of outputs.
- """
- assert (y is not None) == (
- self.num_classes is not None
- ), "must specify y if and only if the model is class-conditional"
- hs = []
- t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) # Create sinusoidal timestep embeddings.
- emb = self.time_embed(t_emb) # MLP
- if self.num_classes is not None:
- assert y.shape == (x.shape[0],)
- emb = emb + self.label_emb(y)
- h = x.type(self.dtype)
- for module in self.input_blocks:
- h = module(h, emb, context)
- hs.append(h)
- h = self.middle_block(h, emb, context)
- for module in self.output_blocks:
- h = th.cat([h, hs.pop()], dim=1)
- h = module(h, emb, context)
- h = h.type(x.dtype)
- if self.predict_codebook_ids:
- return self.id_predictor(h)
- else:
- return self.out(h)
复制代码 2-2--timestep embedding生成
利用函数 timestep_embedding() 和 self.time_embed() 对传入的timestep进行位置编码,生成sinusoidal timestep embeddings。
此中 timestep_embedding() 函数定义如下,而self.time_embed()是一个MLP函数。
- def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
- """
- Create sinusoidal timestep embeddings.
- :param timesteps: a 1-D Tensor of N indices, one per batch element.
- These may be fractional.
- :param dim: the dimension of the output.
- :param max_period: controls the minimum frequency of the embeddings.
- :return: an [N x dim] Tensor of positional embeddings.
- """
- if not repeat_only:
- half = dim // 2
- freqs = torch.exp(
- -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
- ).to(device=timesteps.device)
- args = timesteps[:, None].float() * freqs[None]
- embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
- if dim % 2:
- embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
- else:
- embedding = repeat(timesteps, 'b -> b d', d=dim)
- return embedding
复制代码- self.time_embed = nn.Sequential(
- linear(model_channels, time_embed_dim),
- nn.SiLU(),
- linear(time_embed_dim, time_embed_dim),
- )
复制代码 2-3--self.input_blocks下采样
在 Forward() 中,利用 self.input_blocks 将输入噪声进行分辨率下采样,颠末下采样详细维度变化为:[B*2, 4, 64, 64] > [B*2, 1280, 8, 8];
下采样模块共有12个 module,其组成如下:
- ModuleList(
- (0): TimestepEmbedSequential(
- (0): Conv2d(4, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (1-2): 2 x TimestepEmbedSequential(
- (0): ResBlock(
- (in_layers): Sequential(
- (0): GroupNorm32(32, 320, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (h_upd): Identity()
- (x_upd): Identity()
- (emb_layers): Sequential(
- (0): SiLU()
- (1): Linear(in_features=1280, out_features=320, bias=True)
- )
- (out_layers): Sequential(
- (0): GroupNorm32(32, 320, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Dropout(p=0, inplace=False)
- (3): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (skip_connection): Identity()
- )
- (1): SpatialTransformer(
- (norm): GroupNorm(32, 320, eps=1e-06, affine=True)
- (proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
- (transformer_blocks): ModuleList(
- (0): BasicTransformerBlock(
- (attn1): CrossAttention(
- (to_q): Linear(in_features=320, out_features=320, bias=False)
- (to_k): Linear(in_features=320, out_features=320, bias=False)
- (to_v): Linear(in_features=320, out_features=320, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=320, out_features=320, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (ff): FeedForward(
- (net): Sequential(
- (0): GEGLU(
- (proj): Linear(in_features=320, out_features=2560, bias=True)
- )
- (1): Dropout(p=0.0, inplace=False)
- (2): Linear(in_features=1280, out_features=320, bias=True)
- )
- )
- (attn2): CrossAttention(
- (to_q): Linear(in_features=320, out_features=320, bias=False)
- (to_k): Linear(in_features=768, out_features=320, bias=False)
- (to_v): Linear(in_features=768, out_features=320, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=320, out_features=320, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
- (norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
- (norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
- )
- )
- (proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- (3): TimestepEmbedSequential(
- (0): Downsample(
- (op): Conv2d(320, 320, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
- )
- )
- (4): TimestepEmbedSequential(
- (0): ResBlock(
- (in_layers): Sequential(
- (0): GroupNorm32(32, 320, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Conv2d(320, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (h_upd): Identity()
- (x_upd): Identity()
- (emb_layers): Sequential(
- (0): SiLU()
- (1): Linear(in_features=1280, out_features=640, bias=True)
- )
- (out_layers): Sequential(
- (0): GroupNorm32(32, 640, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Dropout(p=0, inplace=False)
- (3): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (skip_connection): Conv2d(320, 640, kernel_size=(1, 1), stride=(1, 1))
- )
- (1): SpatialTransformer(
- (norm): GroupNorm(32, 640, eps=1e-06, affine=True)
- (proj_in): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
- (transformer_blocks): ModuleList(
- (0): BasicTransformerBlock(
- (attn1): CrossAttention(
- (to_q): Linear(in_features=640, out_features=640, bias=False)
- (to_k): Linear(in_features=640, out_features=640, bias=False)
- (to_v): Linear(in_features=640, out_features=640, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=640, out_features=640, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (ff): FeedForward(
- (net): Sequential(
- (0): GEGLU(
- (proj): Linear(in_features=640, out_features=5120, bias=True)
- )
- (1): Dropout(p=0.0, inplace=False)
- (2): Linear(in_features=2560, out_features=640, bias=True)
- )
- )
- (attn2): CrossAttention(
- (to_q): Linear(in_features=640, out_features=640, bias=False)
- (to_k): Linear(in_features=768, out_features=640, bias=False)
- (to_v): Linear(in_features=768, out_features=640, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=640, out_features=640, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
- (norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
- (norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
- )
- )
- (proj_out): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- (5): TimestepEmbedSequential(
- (0): ResBlock(
- (in_layers): Sequential(
- (0): GroupNorm32(32, 640, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (h_upd): Identity()
- (x_upd): Identity()
- (emb_layers): Sequential(
- (0): SiLU()
- (1): Linear(in_features=1280, out_features=640, bias=True)
- )
- (out_layers): Sequential(
- (0): GroupNorm32(32, 640, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Dropout(p=0, inplace=False)
- (3): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (skip_connection): Identity()
- )
- (1): SpatialTransformer(
- (norm): GroupNorm(32, 640, eps=1e-06, affine=True)
- (proj_in): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
- (transformer_blocks): ModuleList(
- (0): BasicTransformerBlock(
- (attn1): CrossAttention(
- (to_q): Linear(in_features=640, out_features=640, bias=False)
- (to_k): Linear(in_features=640, out_features=640, bias=False)
- (to_v): Linear(in_features=640, out_features=640, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=640, out_features=640, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (ff): FeedForward(
- (net): Sequential(
- (0): GEGLU(
- (proj): Linear(in_features=640, out_features=5120, bias=True)
- )
- (1): Dropout(p=0.0, inplace=False)
- (2): Linear(in_features=2560, out_features=640, bias=True)
- )
- )
- (attn2): CrossAttention(
- (to_q): Linear(in_features=640, out_features=640, bias=False)
- (to_k): Linear(in_features=768, out_features=640, bias=False)
- (to_v): Linear(in_features=768, out_features=640, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=640, out_features=640, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
- (norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
- (norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
- )
- )
- (proj_out): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- (6): TimestepEmbedSequential(
- (0): Downsample(
- (op): Conv2d(640, 640, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
- )
- )
- (7): TimestepEmbedSequential(
- (0): ResBlock(
- (in_layers): Sequential(
- (0): GroupNorm32(32, 640, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Conv2d(640, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (h_upd): Identity()
- (x_upd): Identity()
- (emb_layers): Sequential(
- (0): SiLU()
- (1): Linear(in_features=1280, out_features=1280, bias=True)
- )
- (out_layers): Sequential(
- (0): GroupNorm32(32, 1280, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Dropout(p=0, inplace=False)
- (3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (skip_connection): Conv2d(640, 1280, kernel_size=(1, 1), stride=(1, 1))
- )
- (1): SpatialTransformer(
- (norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
- (proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
- (transformer_blocks): ModuleList(
- (0): BasicTransformerBlock(
- (attn1): CrossAttention(
- (to_q): Linear(in_features=1280, out_features=1280, bias=False)
- (to_k): Linear(in_features=1280, out_features=1280, bias=False)
- (to_v): Linear(in_features=1280, out_features=1280, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=1280, out_features=1280, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (ff): FeedForward(
- (net): Sequential(
- (0): GEGLU(
- (proj): Linear(in_features=1280, out_features=10240, bias=True)
- )
- (1): Dropout(p=0.0, inplace=False)
- (2): Linear(in_features=5120, out_features=1280, bias=True)
- )
- )
- (attn2): CrossAttention(
- (to_q): Linear(in_features=1280, out_features=1280, bias=False)
- (to_k): Linear(in_features=768, out_features=1280, bias=False)
- (to_v): Linear(in_features=768, out_features=1280, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=1280, out_features=1280, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- (norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- (norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- )
- )
- (proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- (8): TimestepEmbedSequential(
- (0): ResBlock(
- (in_layers): Sequential(
- (0): GroupNorm32(32, 1280, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (h_upd): Identity()
- (x_upd): Identity()
- (emb_layers): Sequential(
- (0): SiLU()
- (1): Linear(in_features=1280, out_features=1280, bias=True)
- )
- (out_layers): Sequential(
- (0): GroupNorm32(32, 1280, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Dropout(p=0, inplace=False)
- (3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (skip_connection): Identity()
- )
- (1): SpatialTransformer(
- (norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
- (proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
- (transformer_blocks): ModuleList(
- (0): BasicTransformerBlock(
- (attn1): CrossAttention(
- (to_q): Linear(in_features=1280, out_features=1280, bias=False)
- (to_k): Linear(in_features=1280, out_features=1280, bias=False)
- (to_v): Linear(in_features=1280, out_features=1280, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=1280, out_features=1280, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (ff): FeedForward(
- (net): Sequential(
- (0): GEGLU(
- (proj): Linear(in_features=1280, out_features=10240, bias=True)
- )
- (1): Dropout(p=0.0, inplace=False)
- (2): Linear(in_features=5120, out_features=1280, bias=True)
- )
- )
- (attn2): CrossAttention(
- (to_q): Linear(in_features=1280, out_features=1280, bias=False)
- (to_k): Linear(in_features=768, out_features=1280, bias=False)
- (to_v): Linear(in_features=768, out_features=1280, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=1280, out_features=1280, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- (norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- (norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- )
- )
- (proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- (9): TimestepEmbedSequential(
- (0): Downsample(
- (op): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
- )
- )
- (10-11): 2 x TimestepEmbedSequential(
- (0): ResBlock(
- (in_layers): Sequential(
- (0): GroupNorm32(32, 1280, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (h_upd): Identity()
- (x_upd): Identity()
- (emb_layers): Sequential(
- (0): SiLU()
- (1): Linear(in_features=1280, out_features=1280, bias=True)
- )
- (out_layers): Sequential(
- (0): GroupNorm32(32, 1280, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Dropout(p=0, inplace=False)
- (3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (skip_connection): Identity()
- )
- )
- )
复制代码 12个 module 都利用了 TimestepEmbedSequential 类进行封装,根据不同的网络层,将输入噪声x与timestep embedding和prompt context进行运算。
- class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
- """
- A sequential module that passes timestep embeddings to the children that
- support it as an extra input.
- """
- def forward(self, x, emb, context=None):
- for layer in self:
- if isinstance(layer, TimestepBlock):
- x = layer(x, emb)
- elif isinstance(layer, SpatialTransformer):
- x = layer(x, context)
- else:
- x = layer(x)
- return x
复制代码 2-3-1--Module0
Module 0 是一个2D卷积层,重要对输入噪声进行特性提取;
- # init 初始化
- self.input_blocks = nn.ModuleList(
- [
- TimestepEmbedSequential(
- conv_nd(dims, in_channels, model_channels, 3, padding=1)
- )
- ]
- )
- # 打印 self.input_blocks[0]
- TimestepEmbedSequential(
- (0): Conv2d(4, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
复制代码 2-3-2--Module1和Module2
Module1和Module2的结构相同,都由一个ResBlock和一个SpatialTransformer组成;
- # init 初始化
- for _ in range(num_res_blocks):
- layers = [
- ResBlock(
- ch,
- time_embed_dim,
- dropout,
- out_channels=mult * model_channels,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- )
- ]
- ch = mult * model_channels
- if ds in attention_resolutions:
- if num_head_channels == -1:
- dim_head = ch // num_heads
- else:
- num_heads = ch // num_head_channels
- dim_head = num_head_channels
- if legacy:
- #num_heads = 1
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
- layers.append(
- AttentionBlock(
- ch,
- use_checkpoint=use_checkpoint,
- num_heads=num_heads,
- num_head_channels=dim_head,
- use_new_attention_order=use_new_attention_order,
- ) if not use_spatial_transformer else SpatialTransformer(
- ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
- )
- )
- self.input_blocks.append(TimestepEmbedSequential(*layers))
- self._feature_size += ch
- input_block_chans.append(ch)
- # 打印 self.input_blocks[1]
- TimestepEmbedSequential(
- (0): ResBlock(
- (in_layers): Sequential(
- (0): GroupNorm32(32, 320, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (h_upd): Identity()
- (x_upd): Identity()
- (emb_layers): Sequential(
- (0): SiLU()
- (1): Linear(in_features=1280, out_features=320, bias=True)
- )
- (out_layers): Sequential(
- (0): GroupNorm32(32, 320, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Dropout(p=0, inplace=False)
- (3): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (skip_connection): Identity()
- )
- (1): SpatialTransformer(
- (norm): GroupNorm(32, 320, eps=1e-06, affine=True)
- (proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
- (transformer_blocks): ModuleList(
- (0): BasicTransformerBlock(
- (attn1): CrossAttention(
- (to_q): Linear(in_features=320, out_features=320, bias=False)
- (to_k): Linear(in_features=320, out_features=320, bias=False)
- (to_v): Linear(in_features=320, out_features=320, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=320, out_features=320, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (ff): FeedForward(
- (net): Sequential(
- (0): GEGLU(
- (proj): Linear(in_features=320, out_features=2560, bias=True)
- )
- (1): Dropout(p=0.0, inplace=False)
- (2): Linear(in_features=1280, out_features=320, bias=True)
- )
- )
- (attn2): CrossAttention(
- (to_q): Linear(in_features=320, out_features=320, bias=False)
- (to_k): Linear(in_features=768, out_features=320, bias=False)
- (to_v): Linear(in_features=768, out_features=320, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=320, out_features=320, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
- (norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
- (norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
- )
- )
- (proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- # 打印 self.input_blocks[2]
- TimestepEmbedSequential(
- (0): ResBlock(
- (in_layers): Sequential(
- (0): GroupNorm32(32, 320, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (h_upd): Identity()
- (x_upd): Identity()
- (emb_layers): Sequential(
- (0): SiLU()
- (1): Linear(in_features=1280, out_features=320, bias=True)
- )
- (out_layers): Sequential(
- (0): GroupNorm32(32, 320, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Dropout(p=0, inplace=False)
- (3): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (skip_connection): Identity()
- )
- (1): SpatialTransformer(
- (norm): GroupNorm(32, 320, eps=1e-06, affine=True)
- (proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
- (transformer_blocks): ModuleList(
- (0): BasicTransformerBlock(
- (attn1): CrossAttention(
- (to_q): Linear(in_features=320, out_features=320, bias=False)
- (to_k): Linear(in_features=320, out_features=320, bias=False)
- (to_v): Linear(in_features=320, out_features=320, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=320, out_features=320, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (ff): FeedForward(
- (net): Sequential(
- (0): GEGLU(
- (proj): Linear(in_features=320, out_features=2560, bias=True)
- )
- (1): Dropout(p=0.0, inplace=False)
- (2): Linear(in_features=1280, out_features=320, bias=True)
- )
- )
- (attn2): CrossAttention(
- (to_q): Linear(in_features=320, out_features=320, bias=False)
- (to_k): Linear(in_features=768, out_features=320, bias=False)
- (to_v): Linear(in_features=768, out_features=320, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=320, out_features=320, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
- (norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
- (norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
- )
- )
- (proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
- )
- )
复制代码 2-3-3--Module3
Module3是一个下采样2D卷积层。
- # init 初始化
- if level != len(channel_mult) - 1:
- out_ch = ch
- self.input_blocks.append(
- TimestepEmbedSequential(
- ResBlock(
- ch,
- time_embed_dim,
- dropout,
- out_channels=out_ch,
- dims=dims,
- use_checkpoint=use_checkpoint,
- use_scale_shift_norm=use_scale_shift_norm,
- down=True,
- )
- if resblock_updown
- else Downsample(
- ch, conv_resample, dims=dims, out_channels=out_ch
- )
- )
- )
- # 打印 self.input_blocks[3]
- TimestepEmbedSequential(
- (0): Downsample(
- (op): Conv2d(320, 320, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
- )
- )
复制代码 2-3-4--Module4、Module5、Module7和Module8
与Module1和Module2的结构相同,都由一个ResBlock和一个SpatialTransformer组成,只有特性维度上的区别;
2-3-4--Module6和Module9
与Module3的结构相同,是一个下采样2D卷积层。
2-3--5-Module10和Module11
Module10和Module12的结构相同,只由一个ResBlock组成。
- # 打印 self.input_blocks[10]
- TimestepEmbedSequential(
- (0): ResBlock(
- (in_layers): Sequential(
- (0): GroupNorm32(32, 1280, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (h_upd): Identity()
- (x_upd): Identity()
- (emb_layers): Sequential(
- (0): SiLU()
- (1): Linear(in_features=1280, out_features=1280, bias=True)
- )
- (out_layers): Sequential(
- (0): GroupNorm32(32, 1280, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Dropout(p=0, inplace=False)
- (3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (skip_connection): Identity()
- )
- )
- # 打印 self.input_blocks[11]
- TimestepEmbedSequential(
- (0): ResBlock(
- (in_layers): Sequential(
- (0): GroupNorm32(32, 1280, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (h_upd): Identity()
- (x_upd): Identity()
- (emb_layers): Sequential(
- (0): SiLU()
- (1): Linear(in_features=1280, out_features=1280, bias=True)
- )
- (out_layers): Sequential(
- (0): GroupNorm32(32, 1280, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Dropout(p=0, inplace=False)
- (3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (skip_connection): Identity()
- )
- )
复制代码 2-3-6--ResBlock
ResBlock的输入是噪声图x和timestep embedding,通过卷积处理和残差毗连等方式将timestep embedding融入噪声图特性中,核心代码如下:
- class ResBlock(TimestepBlock):
- """
- A residual block that can optionally change the number of channels.
- :param channels: the number of input channels.
- :param emb_channels: the number of timestep embedding channels.
- :param dropout: the rate of dropout.
- :param out_channels: if specified, the number of out channels.
- :param use_conv: if True and out_channels is specified, use a spatial
- convolution instead of a smaller 1x1 convolution to change the
- channels in the skip connection.
- :param dims: determines if the signal is 1D, 2D, or 3D.
- :param use_checkpoint: if True, use gradient checkpointing on this module.
- :param up: if True, use this block for upsampling.
- :param down: if True, use this block for downsampling.
- """
- def __init__(
- self,
- channels,
- emb_channels,
- dropout,
- out_channels=None,
- use_conv=False,
- use_scale_shift_norm=False,
- dims=2,
- use_checkpoint=False,
- up=False,
- down=False,
- ):
- super().__init__()
- self.channels = channels
- self.emb_channels = emb_channels
- self.dropout = dropout
- self.out_channels = out_channels or channels
- self.use_conv = use_conv
- self.use_checkpoint = use_checkpoint
- self.use_scale_shift_norm = use_scale_shift_norm
- self.in_layers = nn.Sequential(
- normalization(channels),
- nn.SiLU(),
- conv_nd(dims, channels, self.out_channels, 3, padding=1),
- )
- self.updown = up or down
- if up:
- self.h_upd = Upsample(channels, False, dims)
- self.x_upd = Upsample(channels, False, dims)
- elif down:
- self.h_upd = Downsample(channels, False, dims)
- self.x_upd = Downsample(channels, False, dims)
- else:
- self.h_upd = self.x_upd = nn.Identity()
- self.emb_layers = nn.Sequential(
- nn.SiLU(),
- linear(
- emb_channels,
- 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
- ),
- )
- self.out_layers = nn.Sequential(
- normalization(self.out_channels),
- nn.SiLU(),
- nn.Dropout(p=dropout),
- zero_module(
- conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
- ),
- )
- if self.out_channels == channels:
- self.skip_connection = nn.Identity()
- elif use_conv:
- self.skip_connection = conv_nd(
- dims, channels, self.out_channels, 3, padding=1
- )
- else:
- self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
- def forward(self, x, emb):
- """
- Apply the block to a Tensor, conditioned on a timestep embedding.
- :param x: an [N x C x ...] Tensor of features.
- :param emb: an [N x emb_channels] Tensor of timestep embeddings.
- :return: an [N x C x ...] Tensor of outputs.
- """
- return checkpoint(
- self._forward, (x, emb), self.parameters(), self.use_checkpoint
- )
- def _forward(self, x, emb):
- if self.updown:
- in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
- h = in_rest(x)
- h = self.h_upd(h)
- x = self.x_upd(x)
- h = in_conv(h)
- else:
- h = self.in_layers(x) # [6, 320, 64, 64] -> [6, 320, 64, 64]
- emb_out = self.emb_layers(emb).type(h.dtype) # [6, 1280] -> [6, 320]
- while len(emb_out.shape) < len(h.shape): # [6, 320] -> [6, 320, 1, 1]
- emb_out = emb_out[..., None]
- if self.use_scale_shift_norm:
- out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
- scale, shift = th.chunk(emb_out, 2, dim=1)
- h = out_norm(h) * (1 + scale) + shift
- h = out_rest(h)
- else:
- h = h + emb_out # [6, 320, 64, 64] + [6, 320, 1, 1] -> [6, 320, 64, 64]
- h = self.out_layers(h) # [6, 320, 64, 64]
- return self.skip_connection(x) + h
复制代码 2-3-7--SpatialTransformer
SpatialTransformer的输入是噪声图x和文本特性context,通过CrossAttention机制将文本特性融入到噪声图x中,完成条件驱动文生图,核心代码如下:
- from inspect import isfunction
- import math
- import torch
- import torch.nn.functional as F
- from torch import nn, einsum
- from einops import rearrange, repeat
- from util import checkpoint
- def exists(val):
- return val is not None
- def uniq(arr):
- return{el: True for el in arr}.keys()
- def default(val, d):
- if exists(val):
- return val
- return d() if isfunction(d) else d
- def max_neg_value(t):
- return -torch.finfo(t.dtype).max
- def init_(tensor):
- dim = tensor.shape[-1]
- std = 1 / math.sqrt(dim)
- tensor.uniform_(-std, std)
- return tensor
- # feedforward
- class GEGLU(nn.Module):
- def __init__(self, dim_in, dim_out):
- super().__init__()
- self.proj = nn.Linear(dim_in, dim_out * 2)
- def forward(self, x):
- x, gate = self.proj(x).chunk(2, dim=-1)
- return x * F.gelu(gate)
- class FeedForward(nn.Module):
- def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
- super().__init__()
- inner_dim = int(dim * mult)
- dim_out = default(dim_out, dim)
- project_in = nn.Sequential(
- nn.Linear(dim, inner_dim),
- nn.GELU()
- ) if not glu else GEGLU(dim, inner_dim)
- self.net = nn.Sequential(
- project_in,
- nn.Dropout(dropout),
- nn.Linear(inner_dim, dim_out)
- )
- def forward(self, x):
- return self.net(x)
- def zero_module(module):
- """
- Zero out the parameters of a module and return it.
- """
- for p in module.parameters():
- p.detach().zero_()
- return module
- def Normalize(in_channels):
- return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
- class CrossAttention(nn.Module):
- def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
- super().__init__()
- inner_dim = dim_head * heads # dim_head: 40, heads: 8
- context_dim = default(context_dim, query_dim)
- self.scale = dim_head ** -0.5
- self.heads = heads
- self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
- self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
- self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
- self.to_out = nn.Sequential(
- nn.Linear(inner_dim, query_dim),
- nn.Dropout(dropout)
- )
- def forward(self, x, context=None, mask=None):
- h = self.heads # 8
- q = self.to_q(x) # [6, 4096, 320] -> [6, 4096, 320]
- context = default(context, x) # return context [6, 77, 768]
- k = self.to_k(context) # [6, 77, 768] -> [6, 77, 320]
- v = self.to_v(context) # [6, 77, 768] -> [6, 77, 320]
- q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) # [6, 4096, 320] -> [48, 4096, 40] # [6, 77, 320] -> [48, 77, 40]
- sim = einsum('b i d, b j d -> b i j', q, k) * self.scale # [48, 4096, 40] * [48, 77, 40] -> [48, 4096, 77]
- if exists(mask):
- mask = rearrange(mask, 'b ... -> b (...)')
- max_neg_value = -torch.finfo(sim.dtype).max
- mask = repeat(mask, 'b j -> (b h) () j', h=h)
- sim.masked_fill_(~mask, max_neg_value)
- # attention, what we cannot get enough of
- attn = sim.softmax(dim=-1) # softmax
- out = einsum('b i j, b j d -> b i d', attn, v) # [48, 4096, 77] * [48, 77, 40] -> [48, 4096, 40]
- out = rearrange(out, '(b h) n d -> b n (h d)', h=h) # [48, 4096, 40] -> [6, 4096, 320]
- return self.to_out(out)
- class BasicTransformerBlock(nn.Module):
- def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
- super().__init__()
- self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention
- self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
- self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
- heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
- self.norm1 = nn.LayerNorm(dim)
- self.norm2 = nn.LayerNorm(dim)
- self.norm3 = nn.LayerNorm(dim)
- self.checkpoint = checkpoint
- def forward(self, x, context=None):
- return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
- def _forward(self, x, context=None):
- x = self.attn1(self.norm1(x)) + x # self Attention, [6, 4096, 320] -> [6, 4096, 320]
- x = self.attn2(self.norm2(x), context=context) + x # cross Attention, [6, 4096, 320] -> [6, 4096, 320]
- x = self.ff(self.norm3(x)) + x # FFN, [6, 4096, 320] -> [6, 4096, 320]
- return x
- class SpatialTransformer(nn.Module):
- """
- Transformer block for image-like data.
- First, project the input (aka embedding)
- and reshape to b, t, d.
- Then apply standard transformer action.
- Finally, reshape to image
- """
- def __init__(self, in_channels, n_heads, d_head,
- depth=1, dropout=0., context_dim=None):
- super().__init__()
- self.in_channels = in_channels
- inner_dim = n_heads * d_head
- self.norm = Normalize(in_channels)
- self.proj_in = nn.Conv2d(in_channels,
- inner_dim,
- kernel_size=1,
- stride=1,
- padding=0)
- self.transformer_blocks = nn.ModuleList(
- [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
- for d in range(depth)]
- )
- self.proj_out = zero_module(nn.Conv2d(inner_dim,
- in_channels,
- kernel_size=1,
- stride=1,
- padding=0))
- def forward(self, x, context=None):
- # note: if no context is given, cross-attention defaults to self-attention
- b, c, h, w = x.shape # [6, 320, 64, 64]
- x_in = x
- x = self.norm(x) # [6, 320, 64, 64]
- x = self.proj_in(x) # [6, 320, 64, 64]
- x = rearrange(x, 'b c h w -> b (h w) c') # [6, 4096, 320]
- for block in self.transformer_blocks:
- x = block(x, context=context)
- x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
- x = self.proj_out(x)
- return x + x_in
复制代码 2-4--self.middle_block
self.middle_block由两个ResBlock和一个SpatialTransformer组成:
- TimestepEmbedSequential(
- (0): ResBlock(
- (in_layers): Sequential(
- (0): GroupNorm32(32, 1280, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (h_upd): Identity()
- (x_upd): Identity()
- (emb_layers): Sequential(
- (0): SiLU()
- (1): Linear(in_features=1280, out_features=1280, bias=True)
- )
- (out_layers): Sequential(
- (0): GroupNorm32(32, 1280, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Dropout(p=0, inplace=False)
- (3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (skip_connection): Identity()
- )
- (1): SpatialTransformer(
- (norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
- (proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
- (transformer_blocks): ModuleList(
- (0): BasicTransformerBlock(
- (attn1): CrossAttention(
- (to_q): Linear(in_features=1280, out_features=1280, bias=False)
- (to_k): Linear(in_features=1280, out_features=1280, bias=False)
- (to_v): Linear(in_features=1280, out_features=1280, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=1280, out_features=1280, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (ff): FeedForward(
- (net): Sequential(
- (0): GEGLU(
- (proj): Linear(in_features=1280, out_features=10240, bias=True)
- )
- (1): Dropout(p=0.0, inplace=False)
- (2): Linear(in_features=5120, out_features=1280, bias=True)
- )
- )
- (attn2): CrossAttention(
- (to_q): Linear(in_features=1280, out_features=1280, bias=False)
- (to_k): Linear(in_features=768, out_features=1280, bias=False)
- (to_v): Linear(in_features=768, out_features=1280, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=1280, out_features=1280, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- (norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- (norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- )
- )
- (proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
- )
- (2): ResBlock(
- (in_layers): Sequential(
- (0): GroupNorm32(32, 1280, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (h_upd): Identity()
- (x_upd): Identity()
- (emb_layers): Sequential(
- (0): SiLU()
- (1): Linear(in_features=1280, out_features=1280, bias=True)
- )
- (out_layers): Sequential(
- (0): GroupNorm32(32, 1280, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Dropout(p=0, inplace=False)
- (3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (skip_connection): Identity()
- )
- )
复制代码 2-5--self.output_blocks上采样
在 Forward() 中,利用 self.output_blocks 将噪声图进行分辨率上采样,颠末上采样详细维度变化为:[B*2, 1280, 8, 8] > [B*2, 4, 64, 64];
下采样模块共有12个 module,其结构与下采样模块类似,组成如下:
- ModuleList(
- (0-1): 2 x TimestepEmbedSequential(
- (0): ResBlock(
- (in_layers): Sequential(
- (0): GroupNorm32(32, 2560, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Conv2d(2560, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (h_upd): Identity()
- (x_upd): Identity()
- (emb_layers): Sequential(
- (0): SiLU()
- (1): Linear(in_features=1280, out_features=1280, bias=True)
- )
- (out_layers): Sequential(
- (0): GroupNorm32(32, 1280, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Dropout(p=0, inplace=False)
- (3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (skip_connection): Conv2d(2560, 1280, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- (2): TimestepEmbedSequential(
- (0): ResBlock(
- (in_layers): Sequential(
- (0): GroupNorm32(32, 2560, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Conv2d(2560, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (h_upd): Identity()
- (x_upd): Identity()
- (emb_layers): Sequential(
- (0): SiLU()
- (1): Linear(in_features=1280, out_features=1280, bias=True)
- )
- (out_layers): Sequential(
- (0): GroupNorm32(32, 1280, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Dropout(p=0, inplace=False)
- (3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (skip_connection): Conv2d(2560, 1280, kernel_size=(1, 1), stride=(1, 1))
- )
- (1): Upsample(
- (conv): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- )
- (3-4): 2 x TimestepEmbedSequential(
- (0): ResBlock(
- (in_layers): Sequential(
- (0): GroupNorm32(32, 2560, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Conv2d(2560, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (h_upd): Identity()
- (x_upd): Identity()
- (emb_layers): Sequential(
- (0): SiLU()
- (1): Linear(in_features=1280, out_features=1280, bias=True)
- )
- (out_layers): Sequential(
- (0): GroupNorm32(32, 1280, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Dropout(p=0, inplace=False)
- (3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (skip_connection): Conv2d(2560, 1280, kernel_size=(1, 1), stride=(1, 1))
- )
- (1): SpatialTransformer(
- (norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
- (proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
- (transformer_blocks): ModuleList(
- (0): BasicTransformerBlock(
- (attn1): CrossAttention(
- (to_q): Linear(in_features=1280, out_features=1280, bias=False)
- (to_k): Linear(in_features=1280, out_features=1280, bias=False)
- (to_v): Linear(in_features=1280, out_features=1280, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=1280, out_features=1280, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (ff): FeedForward(
- (net): Sequential(
- (0): GEGLU(
- (proj): Linear(in_features=1280, out_features=10240, bias=True)
- )
- (1): Dropout(p=0.0, inplace=False)
- (2): Linear(in_features=5120, out_features=1280, bias=True)
- )
- )
- (attn2): CrossAttention(
- (to_q): Linear(in_features=1280, out_features=1280, bias=False)
- (to_k): Linear(in_features=768, out_features=1280, bias=False)
- (to_v): Linear(in_features=768, out_features=1280, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=1280, out_features=1280, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- (norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- (norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- )
- )
- (proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- (5): TimestepEmbedSequential(
- (0): ResBlock(
- (in_layers): Sequential(
- (0): GroupNorm32(32, 1920, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Conv2d(1920, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (h_upd): Identity()
- (x_upd): Identity()
- (emb_layers): Sequential(
- (0): SiLU()
- (1): Linear(in_features=1280, out_features=1280, bias=True)
- )
- (out_layers): Sequential(
- (0): GroupNorm32(32, 1280, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Dropout(p=0, inplace=False)
- (3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (skip_connection): Conv2d(1920, 1280, kernel_size=(1, 1), stride=(1, 1))
- )
- (1): SpatialTransformer(
- (norm): GroupNorm(32, 1280, eps=1e-06, affine=True)
- (proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
- (transformer_blocks): ModuleList(
- (0): BasicTransformerBlock(
- (attn1): CrossAttention(
- (to_q): Linear(in_features=1280, out_features=1280, bias=False)
- (to_k): Linear(in_features=1280, out_features=1280, bias=False)
- (to_v): Linear(in_features=1280, out_features=1280, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=1280, out_features=1280, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (ff): FeedForward(
- (net): Sequential(
- (0): GEGLU(
- (proj): Linear(in_features=1280, out_features=10240, bias=True)
- )
- (1): Dropout(p=0.0, inplace=False)
- (2): Linear(in_features=5120, out_features=1280, bias=True)
- )
- )
- (attn2): CrossAttention(
- (to_q): Linear(in_features=1280, out_features=1280, bias=False)
- (to_k): Linear(in_features=768, out_features=1280, bias=False)
- (to_v): Linear(in_features=768, out_features=1280, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=1280, out_features=1280, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- (norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- (norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)
- )
- )
- (proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))
- )
- (2): Upsample(
- (conv): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- )
- (6): TimestepEmbedSequential(
- (0): ResBlock(
- (in_layers): Sequential(
- (0): GroupNorm32(32, 1920, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Conv2d(1920, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (h_upd): Identity()
- (x_upd): Identity()
- (emb_layers): Sequential(
- (0): SiLU()
- (1): Linear(in_features=1280, out_features=640, bias=True)
- )
- (out_layers): Sequential(
- (0): GroupNorm32(32, 640, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Dropout(p=0, inplace=False)
- (3): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (skip_connection): Conv2d(1920, 640, kernel_size=(1, 1), stride=(1, 1))
- )
- (1): SpatialTransformer(
- (norm): GroupNorm(32, 640, eps=1e-06, affine=True)
- (proj_in): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
- (transformer_blocks): ModuleList(
- (0): BasicTransformerBlock(
- (attn1): CrossAttention(
- (to_q): Linear(in_features=640, out_features=640, bias=False)
- (to_k): Linear(in_features=640, out_features=640, bias=False)
- (to_v): Linear(in_features=640, out_features=640, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=640, out_features=640, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (ff): FeedForward(
- (net): Sequential(
- (0): GEGLU(
- (proj): Linear(in_features=640, out_features=5120, bias=True)
- )
- (1): Dropout(p=0.0, inplace=False)
- (2): Linear(in_features=2560, out_features=640, bias=True)
- )
- )
- (attn2): CrossAttention(
- (to_q): Linear(in_features=640, out_features=640, bias=False)
- (to_k): Linear(in_features=768, out_features=640, bias=False)
- (to_v): Linear(in_features=768, out_features=640, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=640, out_features=640, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
- (norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
- (norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
- )
- )
- (proj_out): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- (7): TimestepEmbedSequential(
- (0): ResBlock(
- (in_layers): Sequential(
- (0): GroupNorm32(32, 1280, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Conv2d(1280, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (h_upd): Identity()
- (x_upd): Identity()
- (emb_layers): Sequential(
- (0): SiLU()
- (1): Linear(in_features=1280, out_features=640, bias=True)
- )
- (out_layers): Sequential(
- (0): GroupNorm32(32, 640, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Dropout(p=0, inplace=False)
- (3): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (skip_connection): Conv2d(1280, 640, kernel_size=(1, 1), stride=(1, 1))
- )
- (1): SpatialTransformer(
- (norm): GroupNorm(32, 640, eps=1e-06, affine=True)
- (proj_in): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
- (transformer_blocks): ModuleList(
- (0): BasicTransformerBlock(
- (attn1): CrossAttention(
- (to_q): Linear(in_features=640, out_features=640, bias=False)
- (to_k): Linear(in_features=640, out_features=640, bias=False)
- (to_v): Linear(in_features=640, out_features=640, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=640, out_features=640, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (ff): FeedForward(
- (net): Sequential(
- (0): GEGLU(
- (proj): Linear(in_features=640, out_features=5120, bias=True)
- )
- (1): Dropout(p=0.0, inplace=False)
- (2): Linear(in_features=2560, out_features=640, bias=True)
- )
- )
- (attn2): CrossAttention(
- (to_q): Linear(in_features=640, out_features=640, bias=False)
- (to_k): Linear(in_features=768, out_features=640, bias=False)
- (to_v): Linear(in_features=768, out_features=640, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=640, out_features=640, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
- (norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
- (norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
- )
- )
- (proj_out): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- (8): TimestepEmbedSequential(
- (0): ResBlock(
- (in_layers): Sequential(
- (0): GroupNorm32(32, 960, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Conv2d(960, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (h_upd): Identity()
- (x_upd): Identity()
- (emb_layers): Sequential(
- (0): SiLU()
- (1): Linear(in_features=1280, out_features=640, bias=True)
- )
- (out_layers): Sequential(
- (0): GroupNorm32(32, 640, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Dropout(p=0, inplace=False)
- (3): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (skip_connection): Conv2d(960, 640, kernel_size=(1, 1), stride=(1, 1))
- )
- (1): SpatialTransformer(
- (norm): GroupNorm(32, 640, eps=1e-06, affine=True)
- (proj_in): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
- (transformer_blocks): ModuleList(
- (0): BasicTransformerBlock(
- (attn1): CrossAttention(
- (to_q): Linear(in_features=640, out_features=640, bias=False)
- (to_k): Linear(in_features=640, out_features=640, bias=False)
- (to_v): Linear(in_features=640, out_features=640, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=640, out_features=640, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (ff): FeedForward(
- (net): Sequential(
- (0): GEGLU(
- (proj): Linear(in_features=640, out_features=5120, bias=True)
- )
- (1): Dropout(p=0.0, inplace=False)
- (2): Linear(in_features=2560, out_features=640, bias=True)
- )
- )
- (attn2): CrossAttention(
- (to_q): Linear(in_features=640, out_features=640, bias=False)
- (to_k): Linear(in_features=768, out_features=640, bias=False)
- (to_v): Linear(in_features=768, out_features=640, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=640, out_features=640, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
- (norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
- (norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)
- )
- )
- (proj_out): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))
- )
- (2): Upsample(
- (conv): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- )
- (9): TimestepEmbedSequential(
- (0): ResBlock(
- (in_layers): Sequential(
- (0): GroupNorm32(32, 960, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Conv2d(960, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (h_upd): Identity()
- (x_upd): Identity()
- (emb_layers): Sequential(
- (0): SiLU()
- (1): Linear(in_features=1280, out_features=320, bias=True)
- )
- (out_layers): Sequential(
- (0): GroupNorm32(32, 320, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Dropout(p=0, inplace=False)
- (3): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (skip_connection): Conv2d(960, 320, kernel_size=(1, 1), stride=(1, 1))
- )
- (1): SpatialTransformer(
- (norm): GroupNorm(32, 320, eps=1e-06, affine=True)
- (proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
- (transformer_blocks): ModuleList(
- (0): BasicTransformerBlock(
- (attn1): CrossAttention(
- (to_q): Linear(in_features=320, out_features=320, bias=False)
- (to_k): Linear(in_features=320, out_features=320, bias=False)
- (to_v): Linear(in_features=320, out_features=320, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=320, out_features=320, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (ff): FeedForward(
- (net): Sequential(
- (0): GEGLU(
- (proj): Linear(in_features=320, out_features=2560, bias=True)
- )
- (1): Dropout(p=0.0, inplace=False)
- (2): Linear(in_features=1280, out_features=320, bias=True)
- )
- )
- (attn2): CrossAttention(
- (to_q): Linear(in_features=320, out_features=320, bias=False)
- (to_k): Linear(in_features=768, out_features=320, bias=False)
- (to_v): Linear(in_features=768, out_features=320, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=320, out_features=320, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
- (norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
- (norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
- )
- )
- (proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- (10-11): 2 x TimestepEmbedSequential(
- (0): ResBlock(
- (in_layers): Sequential(
- (0): GroupNorm32(32, 640, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Conv2d(640, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (h_upd): Identity()
- (x_upd): Identity()
- (emb_layers): Sequential(
- (0): SiLU()
- (1): Linear(in_features=1280, out_features=320, bias=True)
- )
- (out_layers): Sequential(
- (0): GroupNorm32(32, 320, eps=1e-05, affine=True)
- (1): SiLU()
- (2): Dropout(p=0, inplace=False)
- (3): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- )
- (skip_connection): Conv2d(640, 320, kernel_size=(1, 1), stride=(1, 1))
- )
- (1): SpatialTransformer(
- (norm): GroupNorm(32, 320, eps=1e-06, affine=True)
- (proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
- (transformer_blocks): ModuleList(
- (0): BasicTransformerBlock(
- (attn1): CrossAttention(
- (to_q): Linear(in_features=320, out_features=320, bias=False)
- (to_k): Linear(in_features=320, out_features=320, bias=False)
- (to_v): Linear(in_features=320, out_features=320, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=320, out_features=320, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (ff): FeedForward(
- (net): Sequential(
- (0): GEGLU(
- (proj): Linear(in_features=320, out_features=2560, bias=True)
- )
- (1): Dropout(p=0.0, inplace=False)
- (2): Linear(in_features=1280, out_features=320, bias=True)
- )
- )
- (attn2): CrossAttention(
- (to_q): Linear(in_features=320, out_features=320, bias=False)
- (to_k): Linear(in_features=768, out_features=320, bias=False)
- (to_v): Linear(in_features=768, out_features=320, bias=False)
- (to_out): Sequential(
- (0): Linear(in_features=320, out_features=320, bias=True)
- (1): Dropout(p=0.0, inplace=False)
- )
- )
- (norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
- (norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
- (norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)
- )
- )
- (proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))
- )
- )
- )
复制代码
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |