更新信息
最大的更新莫过于对 Llama 3.2 Vision 视觉模型的支持!ollama 的版本也因此从v0.3.14直接升级到v0.4.0。
升级 ollama 后,运行如下命令体验
- # 默认运行 11B 大小模型
- ollama run llama3.2-vision
- # 运行 90B 大小模型,需要显存支持
- ollama run llama3.2-vision:90b
复制代码
- 支持 Llama 3.2 Vision(即 Llama)架构,即 Llama 最新的视觉模型。
- 向视觉模型发送后续请求将显著加快速率。
- 修复了停止序列无法正确检测的问题
- 现在可以在运行 ollama create my-model 时从 Safetensors 导入模型,而不需要 Modelfile 文件
- 办理了在 Windows 下重定向输出到文件会导致写入无效字符的问题
- 办理了导致 Ollama 堕落的不正当模型数据问题
图片识别 Demo
- >>> /Users/geek/Pictures/ollama-hardwriting.jpg what is the content.
- Added image '/Users/geek/Pictures/ollama-hardwriting.jpg'
- The image contains a handwritten note in Chinese characters, accompanied by an English translation. The note is divided into three sections:
- * **Section 1:** "Ollama" (likely a personal name or title) followed by several Chinese characters.
- * **Section 2:** A numbered list with the following items:
- * **Item 1:** "Stay hungry, Stay foolish." (an English phrase)
- * **Item 2:** A series of Chinese characters
- * **Item 3:** Another series of Chinese characters
- The image appears to be a personal note or message written in Chinese and English.
复制代码 从测试来看,手写字体识别中,Llama 3.2 Vision 模型很好的支持英文,无法识别中文,对中文的支持比较差,但是能区分出哪些字符是中文。
OCR
 - $ ollama run llama3.2-vision
- >>> /Users/geek/Pictures/ollama-ocr.png what is the content.
- Added image '/Users/geek/Pictures/ollama-ocr.png'
- The image displays a slide from Meta's presentation about Llama 3.2, a large language model developed by Facebook AI
- Research (FAIR). The slide provides an overview of the model's capabilities and features.
- * **Title**
- + The title of the slide is "Llama 3.2" in large text at the top.
- * **Description**
- + Below the title, there is a brief description of Llama 3.2 as a multimodal large language model that can perform
- various tasks such as answering questions, generating text, and translating languages.
- + The description also mentions that Llama 3.2 has been trained on a diverse range of datasets, including but not
- limited to natural language processing (NLP) tasks like question answering, sentiment analysis, named entity
- recognition, part-of-speech tagging, dependency parsing, and word sense induction.
- * **Features**
- + The slide highlights some key features of Llama 3.2, including its ability to:
- - Understand and generate human-like language
- - Perform various NLP tasks with high accuracy
- - Learn from large amounts of text data
- - Be fine-tuned for specific applications or domains
- * **Benefits**
- + The slide also mentions the benefits of using Llama 3.2, such as:
- - Improving language understanding and generation capabilities
- - Enhancing NLP performance in various tasks
- - Facilitating development of more sophisticated AI systems
- Overall, the image provides a concise overview of Llama 3.2's capabilities and features, highlighting its potential
- applications and benefits in various fields such as natural language processing, computer vision, and robotics.
- >>> which language llama3.2 vision support?
- Llama 3.2 Vision supports the following languages:
- * English
- * German
- * French
- * Italian
- * Portuguese
- * Hindi
- * Spanish
- * Thai
- >>> how many size llama3.2 vision has
- The Llama 3.2-Vision model is available in two sizes: 11B and 90B.
复制代码 Llama 3.2 Vision 原生支持英文,对英文内容的识别非常准确,输出支持标准的 MarkDown 格式,而且能够正确理解识别的内容,并进行简单的问答。
感觉可以用来做大陆的英文试卷,比如选择题和阅读理解,后续可以测试下看看结果。
图表
- >>> /Users/geek/Pictures/ollama-hist.png what is the most popular value?
- Added image '/Users/geek/Pictures/ollama-hist.png'
- The most popular value in this chart is 4, which appears 49 times. This is represented by the tallest bar on the
- graph.
- >>> how many bar in the chart.
- There are seven bars representing different values from one to seven.
- >>> sum the value of bar in the chart
- To find the sum of the values represented by each bar, we can add up the numbers on the y-axis for each x-axis value.
- * Bar 1: 7
- * Bar 2: 14
- * Bar 3: 28
- * Bar 4: 49
- * Bar 5: 37
- * Bar 6: 17
- * Bar 7: 8
- Summing these values gives us a total of **160**.
复制代码 能够理解问题,并结合图标内容给出答案,缺点是不能精确识别图标中的值,需要提高精确度。
图片问答
- >>> /Users/geek/Pictures/ollama-cat.webp what is the animal?
- Unknown command '/Users/geek/Pictures/ollama-cat.webp'. Type /? for help
- >>> /Users/geek/Pictures/ollama-cat.png what is the animal?
- Added image '/Users/geek/Pictures/ollama-cat.png'
- The animals in the image are cats. The cat on the left appears to be a long-haired orange and white domestic
- shorthair, while the cat on the right seems to be a short-haired brown tabby with a white patch on its chest.
- >>> responsd in chinese.
- (Animals: Two cats)
- This image shows two cats. The left one is an orange and white domestic shorthair, while the right one appears to be
- a short-haired brown tabby with a white patch on its chest.
- >>> how many cats in this image?
- There are 2 cats in this image.
复制代码 从测试看,Llama 3.2 Vision 能够正确识别动物,而且描述图片的内容,能够盘算出有 2 只猫。不足之处是图片格式还不支持 webp。
性能分析
Llama 3.2 Vision 11B 在 MacBook Pro 2022, M2x Max 上的内存占用仅有 3.32G,和 Chrome 浏览器占用的内存一个数量级。
加在图片的时间在 30-60ms 之间。理解图片的内容要长的多,耗时在秒级,具体时间取决于图片内容的复杂度,图片越简单,耗时越少,越复杂耗时越久。像 OCR 和手写字体的例子,耗时在 40s。
至于 token 的天生速率,基本都在 25 token/s,能够满意日常使用。
- # 手写字体识别
- /Users/geek/Pictures/ollama-hardwriting.jpg what is the content.
- Added image '/Users/geek/Pictures/ollama-hardwriting.jpg'
- total duration: 39.276179625s
- load duration: 38.170708ms
- prompt eval count: 17 token(s)
- prompt eval duration: 29.411s
- prompt eval rate: 0.58 tokens/s
- eval count: 242 token(s)
- eval duration: 9.605s
- eval rate: 25.20 tokens/s
- # 动物识别
- >>> /Users/geek/Pictures/ollama-cat.png what is the animal?
- Added image '/Users/geek/Pictures/ollama-cat.png'
- total duration: 1.628926916s
- load duration: 66.047166ms
- prompt eval count: 17 token(s)
- prompt eval duration: 201ms
- prompt eval rate: 84.58 tokens/s
- eval count: 40 token(s)
- eval duration: 1.15s
- eval rate: 34.78 tokens/s
- # meta 博客内容 OCR 识别
- >>> /Users/geek/Pictures/ollama-ocr.png what is the content.
- Added image '/Users/geek/Pictures/ollama-ocr.png'
- total duration: 41.742993542s
- load duration: 31.597584ms
- prompt eval count: 17 token(s)
- prompt eval duration: 29.122s
- prompt eval rate: 0.58 tokens/s
- eval count: 302 token(s)
- eval duration: 12.409s
- eval rate: 24.34 tokens/s
复制代码 总结
Ollama v0.4.0 最大的特点就是对 Meta Llama 3.2 Vision视觉模型的支持了。
在实际测试过程中,Llama 3.2 Vision能够很好的识别并理解图片内容,理解图片的耗时取决于图片内容的复杂度,简单图片耗时在 5s 内,复杂图片也在 1min 内。
11B 模型在 Mac 上的内存占用仅 3G 左右,token 的天生速率在 25Token/s,使用结果上个人认为和 ChatGPT 的图片理解在同一水平,能够满意个人的日常使用需求了。
参考资料 [1]
ollama release: https://github.com/ollama/ollama/releases/tag/v0.4.0
[2] Llama 3.2 Vision: https://ollama.com/blog/llama3.2-vision
[3] ollama x status: https://x.com/ollama/status/1854269461144174764
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |