本系列博客将利用C++实现一系列数值算法。数值算法离不开矩阵,但是C++并未自带矩阵这一对象,直接使用数组又会带来诸多不便,因此我们需要做一些预备工作————编写一个矩阵类,实现矩阵的基本功能。一般来说,读者可以直接使用Eigen库进行矩阵计算,从头开始造轮子仅仅是为了满足笔者个人的需要。
一、成员组成
回顾矩阵的定义,我们仅需三个量就可以具体描述一个矩阵:行指标,列指标,对应位置的元素。因此我们在类Matrix(下文就如此称呼了,和代码保持一致)中定义三个数据成员:行指标,列指标,一个二重指针。- typedef unsigned int Index;
- class Matrix{
- private:
- Index Number_of_row;//行数
- Index Number_of_column;//列数
- double **p_Matrix;//二重指针构造矩阵
- }
复制代码 二、基本功能的分析与实现
按一般类的定义,类Matrix需要有构造函数、析构函数和拷贝函数。构造函数生成矩阵时,矩阵的每一个位置都需要被赋值,最合适的默认值莫过于0,因此在用户未指定的情况下,默认每个值为零;如果用户指定了某个值a,则将每个位置赋值a。因此,如下创建构造函数:- Matrix( Index num_of_row, Index num_of_column){ //一般矩阵,默认为全零矩阵。
- Number_of_row = num_of_row;
- Number_of_column = num_of_column;
- p_Matrix = new double*[num_of_row];
- for( int i = 0; i < num_of_row; i++){
- p_Matrix[i] = new double[num_of_column];
- }
- for( int i = 0; i < num_of_row; i++){
- for( int j = 0; j < num_of_column; j++){
- p_Matrix[i][j] = 0;
- }
- }
- }
- Matrix( Index num_of_row, Index num_of_column, double value){ //一般矩阵,默认为全为value
- Number_of_row = num_of_row;
- Number_of_column = num_of_column;
- p_Matrix = new double*[num_of_row];
- for( int i = 0; i < num_of_row; i++){
- p_Matrix[i] = new double[num_of_column];
- }
- for( int i = 0; i < num_of_row; i++){
- for( int j = 0; j < num_of_column; j++){
- p_Matrix[i][j] = value;
- }
- }
- }
复制代码 对应的析构函数和拷贝函数如下:- //析构函数
- ~Matrix(){
- for( int i = 0; i < Number_of_row; i++){
- delete[] p_Matrix[i];
- }
- delete[] p_Matrix;
- }
- //拷贝函数
- Matrix( const Matrix &Copy_Matrix){
- Number_of_row = Copy_Matrix.Number_of_row;
- Number_of_column = Copy_Matrix.Number_of_column;
- for(int i = 0; i < Number_of_row; i++){
- p_Matrix[i] = new double[Number_of_column];
- }
- for( int i = 0; i < Number_of_row; i++){
- for( int j = 0; j < Number_of_column; j++){
- p_Matrix[i][j] = Copy_Matrix.p_Matrix[i][j];
- }
- }
- }
复制代码 对于类Matrix而言,它自然必须有能显示和改变元素值的功能,我们将这个需求交给以下两个函数:
[code] //输出矩阵 void Print_Matrix(){ for( int i = 0; i < Number_of_row; i++){ for( int j = 0; j < Number_of_column; j++){ cout Number_of_row; i++){ delete[] p_Matrix; } delete[] p_Matrix; p_Matrix = new double*[A.Number_of_row]; for( int i = 0; i < A.Number_of_row; i++){ p_Matrix = new double[A.Number_of_column]; } this->Number_of_row = A.Number_of_row; this->Number_of_column = A.Number_of_column; for(int i = 0; i < this->Number_of_row; i++){ for(int j = 0; j < this->Number_of_column; j++){ this->p_Matrix[j] = A.p_Matrix[j]; } } } else{ for(int i = 0; i < this->Number_of_row; i++){ for(int j = 0; j < this->Number_of_column; j++){ this->p_Matrix[j] = A.p_Matrix[j]; } } } return *this; } //重载减法 Matrix operator- (const Matrix &A){ Matrix tempMatrix(A.Number_of_row, A.Number_of_column); if (A.Number_of_column != this->Number_of_column || A.Number_of_row != this->Number_of_row){ cout p_Matrix[j] - A.p_Matrix[j]; } } } return tempMatrix; } //重载乘法 //数乘 Matrix operator*(double value){ Matrix tempMatrix(this->Number_of_row, this->Number_of_column); for(int i = 0; i < this->Number_of_row; i++){ for(int j = 0; j < this->Number_of_column; j++){ tempMatrix.p_Matrix[j] = value*this->p_Matrix[j]; } } return tempMatrix; } friend Matrix operator*(double value, const Matrix &A){ Matrix tempMatrix(A.Number_of_row, A.Number_of_column); for(int i = 0; i < A.Number_of_row; i++){ for(int j = 0; j < A.Number_of_column; j++){ tempMatrix.p_Matrix[j] = value*A.p_Matrix[j]; } } return tempMatrix; } //矩阵相乘 friend Matrix operator*(Matrix &A, Matrix &B){ Matrix tempMatrix(A.Number_of_row, B.Number_of_column); if(A.Number_of_column != B.Number_of_row){ cout |