接上一篇文章
https://blog.csdn.net/m0_60688978/article/details/139359541?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22139359541%22%2C%22source%22%3A%22m0_60688978%22%7D
- sentences = [
- ['咖哥 喜欢 小冰', 'KaGe likes XiaoBing'],
- ['我 爱 学习 人工智能', 'I love studying AI'],
- ['深度学习 改变 世界', ' DL changed the world'],
- ['自然语言处理 很 强大', 'NLP is powerful'],
- ['神经网络 非常 复杂', 'Neural-networks are complex'] ]
- class TranslationCorpus:
- def __init__(self, sentences):
- self.sentences = sentences
- # 计算源语言和目标语言的最大句子长度,并分别加 1 和 2 以容纳填充符和特殊符号
- self.src_len = max(len(sentence[0].split()) for sentence in sentences) + 1
- self.tgt_len = max(len(sentence[1].split()) for sentence in sentences) + 2
- # 创建源语言和目标语言的词汇表
- self.src_vocab, self.tgt_vocab = self.create_vocabularies()
- # 创建索引到单词的映射
- self.src_idx2word = {v: k for k, v in self.src_vocab.items()}
- self.tgt_idx2word = {v: k for k, v in self.tgt_vocab.items()}
- # 定义创建词汇表的函数
- def create_vocabularies(self):
- # 统计源语言和目标语言的单词频率
- src_counter = Counter(word for sentence in self.sentences for word in sentence[0].split())
- tgt_counter = Counter(word for sentence in self.sentences for word in sentence[1].split())
- # 创建源语言和目标语言的词汇表,并为每个单词分配一个唯一的索引
- src_vocab = {'<pad>': 0, **{word: i+1 for i, word in enumerate(src_counter)}}
- tgt_vocab = {'<pad>': 0, '<sos>': 1, '<eos>': 2,
- **{word: i+3 for i, word in enumerate(tgt_counter)}}
- return src_vocab, tgt_vocab
- # 定义创建批次数据的函数
- def make_batch(self, batch_size, test_batch=False):
- input_batch, output_batch, target_batch = [], [], []
- # 随机选择句子索引
- sentence_indices = torch.randperm(len(self.sentences))[:batch_size]
- for index in sentence_indices:
- src_sentence, tgt_sentence = self.sentences[index]
- # 将源语言和目标语言的句子转换为索引序列
- src_seq = [self.src_vocab[word] for word in src_sentence.split()]
- tgt_seq = [self.tgt_vocab['<sos>']] + [self.tgt_vocab[word] \
- for word in tgt_sentence.split()] + [self.tgt_vocab['<eos>']]
- # 对源语言和目标语言的序列进行填充
- src_seq += [self.src_vocab['<pad>']] * (self.src_len - len(src_seq))
- tgt_seq += [self.tgt_vocab['<pad>']] * (self.tgt_len - len(tgt_seq))
- # 将处理好的序列添加到批次中
- input_batch.append(src_seq)
- output_batch.append([self.tgt_vocab['<sos>']] + ([self.tgt_vocab['<pad>']] * \
- (self.tgt_len - 2)) if test_batch else tgt_seq[:-1])
- target_batch.append(tgt_seq[1:])
- # 将批次转换为 LongTensor 类型
- input_batch = torch.LongTensor(input_batch)
- output_batch = torch.LongTensor(output_batch)
- target_batch = torch.LongTensor(target_batch)
- return input_batch, output_batch, target_batch
- # 创建语料库类实例
- corpus = TranslationCorpus(sentences)
- #训练
- import torch # 导入 torch
- import torch.optim as optim # 导入优化器
- model = Transformer(corpus) # 创建模型实例
- criterion = nn.CrossEntropyLoss() # 损失函数
- optimizer = optim.Adam(model.parameters(), lr=0.00001) # 优化器
- epochs = 1 # 训练轮次
- for epoch in range(epochs): # 训练 100 轮
- optimizer.zero_grad() # 梯度清零
- enc_inputs, dec_inputs, target_batch = corpus.make_batch(batch_size) # 创建训练数据
- print(enc_inputs, dec_inputs, target_batch)
-
-
- outputs, _, _, _ = model(enc_inputs, dec_inputs) # 获取模型输出
- loss = criterion(outputs.view(-1, len(corpus.tgt_vocab)), target_batch.view(-1)) # 计算损失
- if (epoch + 1) % 1 == 0: # 打印损失
- print(f"Epoch: {epoch + 1:04d} cost = {loss:.6f}")
- loss.backward()# 反向传播
- optimizer.step()# 更新参数
- #预测
- # 创建一个大小为 1 的批次,目标语言序列 dec_inputs 在测试阶段,仅包含句子开始符号 <sos>
- enc_inputs, dec_inputs, target_batch = corpus.make_batch(batch_size=1,test_batch=True)
- # enc_inputs=torch.tensor([[14, 15, 16, 0, 0]])
- dec_inputs=torch.tensor([[1, 0, 0, 0, 0]])
- outt=1
- for i in range(5):
- dec_inputs[0][i]=outt
- print("+++",i,dec_inputs[0][i],dec_inputs,outt)
- predict, enc_self_attns, dec_self_attns, dec_enc_attns = model(enc_inputs, dec_inputs) # 用模型进行翻译
- predict = predict.view(-1, len(corpus.tgt_vocab)) # 将预测结果维度重塑
- predict = predict.data.max(1, keepdim=True)[1] # 找到每个位置概率最大的词汇的索引
- print(predict)
- outt=predict[i].item()
-
- print("编码器输入 :", enc_inputs) # 打印编码器输入
- print("解码器输入 :", dec_inputs) # 打印解码器输入
- print("目标数据 :", target_batch) # 打印目标数据
- predict, enc_self_attns, dec_self_attns, dec_enc_attns = model(enc_inputs, dec_inputs) # 用模型进行翻译
- print(predict.data.max(-1))
- predict = predict.view(-1, len(corpus.tgt_vocab)) # 将预测结果维度重塑
- predict = predict.data.max(1, keepdim=True)[1] # 找到每个位置概率最大的词汇的索引
- # 解码预测的输出,将所预测的目标句子中的索引转换为单词
- translated_sentence = [corpus.tgt_idx2word[idx.item()] for idx in predict.squeeze()]
- # 将输入的源语言句子中的索引转换为单词
- input_sentence = ' '.join([corpus.src_idx2word[idx.item()] for idx in enc_inputs[0]])
- print(input_sentence, '->', translated_sentence) # 打印原始句子和翻译后的句子
复制代码 免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |