- #%%
- import scipy.io
- import pandas as pd
- import numpy as np
- # Load the .mat file
- file_path = 'clay_C.mat'
- mat_data = scipy.io.loadmat(file_path)
- ## 建立结果表格
- # 定义行、列名
- columns = ['0.1', '0.5', '1', '2', '3', '4', '5']
- index = ['0.1', '0.5', '1', '2', '3', '4', '5']
- my_psnrs_mean = pd.DataFrame(np.nan,index = index, columns=columns)
- my_ssims_mean = pd.DataFrame(np.nan,index = index, columns=columns)
- my_fsims_mean = pd.DataFrame(np.nan,index = index, columns=columns)
- my_ergas_mean = pd.DataFrame(np.nan,index = index, columns=columns)
- #%%
- # 假设MAT文件中包含一个名为'C'的数据变量
- data = mat_data['C']
- #%%
- # 将数据转换为DataFrame
- df = pd.DataFrame(data)
- df = df.transpose()
- #%%
- for i in range(len(df)):
- row = df.iloc[i][0]
-
- my_df = pd.DataFrame(row)
-
- psnrs_mean = my_df.iloc[0,0][0][-1]
- ssims_mean = my_df.iloc[0,1][0][-1]
- fsims_mean = my_df.iloc[0,2][0][-1]
- ergas_mean = my_df.iloc[0,3][0][-1]
- tau_1 = my_df.iloc[0,4][0][-1]
- tau_2 = my_df.iloc[0,5][0][-1]
-
- my_psnrs_mean.loc[str(tau_1),str(tau_2)] = psnrs_mean
-
- my_ssims_mean.loc[str(tau_1),str(tau_2)] = ssims_mean
-
- my_fsims_mean.loc[str(tau_1),str(tau_2)] = fsims_mean
-
- my_ergas_mean.loc[str(tau_1),str(tau_2)] = ergas_mean
- #%%
- my_psnrs_mean*10
- #%%
- my_ssims_mean*10
- #%%
- my_fsims_mean*10
- #%%
- my_ergas_mean*10
复制代码 代码具体分析
这段代码从MAT文件中读取数据,并将其转换为多个Pandas DataFrame,以便进行后续的分析和处置惩罚。以下是代码的具体分析:
1. 导入库和读取MAT文件
- import scipy.io
- import pandas as pd
- import numpy as np
- # Load the .mat file
- file_path = 'clay_C.mat'
- mat_data = scipy.io.loadmat(file_path)
复制代码 这里使用了scipy.io.loadmat函数来读取MAT文件,并将其存储在变量mat_data中。
2. 建立结果表格
- # 定义行、列名
- columns = ['0.1', '0.5', '1', '2', '3', '4', '5']
- index = ['0.1', '0.5', '1', '2', '3', '4', '5']
- my_psnrs_mean = pd.DataFrame(np.nan,index = index, columns=columns)
- my_ssims_mean = pd.DataFrame(np.nan,index = index, columns=columns)
- my_fsims_mean = pd.DataFrame(np.nan,index = index, columns=columns)
- my_ergas_mean = pd.DataFrame(np.nan,index = index, columns=columns)
复制代码 这里创建了四个空的DataFrame来存储结果,每个DataFrame的行和列都是['0.1', '0.5', '1', '2', '3', '4', '5']。
3. 提取数据并转换为DataFrame
- # 假设MAT文件中包含一个名为'C'的数据变量
- data = mat_data['C']
- # 将数据转换为DataFrame
- df = pd.DataFrame(data)
- df = df.transpose()
复制代码 从MAT文件中提取名为'C'的数据变量,将其转换为Pandas DataFrame,并对其进行转置。
4. 迭代每一行并提取指标
- for i in range(len(df)):
- row = df.iloc[i][0]
-
- my_df = pd.DataFrame(row)
-
- psnrs_mean = my_df.iloc[0,0][0][-1]
- ssims_mean = my_df.iloc[0,1][0][-1]
- fsims_mean = my_df.iloc[0,2][0][-1]
- ergas_mean = my_df.iloc[0,3][0][-1]
- tau_1 = my_df.iloc[0,4][0][-1]
- tau_2 = my_df.iloc[0,5][0][-1]
-
- my_psnrs_mean.loc[str(tau_1),str(tau_2)] = psnrs_mean
- my_ssims_mean.loc[str(tau_1),str(tau_2)] = ssims_mean
- my_fsims_mean.loc[str(tau_1),str(tau_2)] = fsims_mean
- my_ergas_mean.loc[str(tau_1),str(tau_2)] = ergas_mean
复制代码 遍历DataFrame的每一行,并提取每行的各项指标值。具体操作如下:
- 将每一行的第一个元素转换为新的DataFrame my_df。
- 提取 psnrs_mean、ssims_mean、fsims_mean、ergas_mean、tau_1 和 tau_2 值。
- 将这些值填入相应的结果DataFrame中,使用tau_1和tau_2作为索引。
5. 打印结果
- my_psnrs_mean*10
- my_ssims_mean*10
- my_fsims_mean*10
- my_ergas_mean*10
复制代码 这里将每个结果DataFrame中的值乘以10并显示出来。
总结
该代码的紧张目的是从MAT文件中读取数据,并将此中包罗的各种性能指标提取出来,存储到多个Pandas DataFrame中。每个结果DataFrame的行和列是tau_1和tau_2的组合,存储对应的psnrs_mean、ssims_mean、fsims_mean和ergas_mean值。
原代码
- %SpaTRPCA_BSDtest200_5method_Corr10
- clear;clc;close all
- addpath(genpath('lib'));
- addpath(genpath('data'));
- addpath(genpath('competing methods'));
- rhos = 0.1; %Percent of corrupted pixels
- % %% Options settings
- % opts.mu = 1e-2;
- % opts.tol = 1e-6;
- % opts.rho = 1.1;
- % opts.max_iter = 500;0
- % opts.DEBUG = 0;
- % opts.tau_F= 2;
-
- method='TCTV';
-
- datadir = 'data/CAVE_USED';
- seqs = dir(datadir);
- seq3 = seqs(3:end);
- n_img=length(seq3);
- temp=zeros(n_img,1);
- psnrs_TCTV=temp;psnrs_FTCTV=temp;psnrs_HTCTV=temp; psnrs_CTCTV=temp; psnrs_WTCTV=temp; psnrs_GTCTV=temp;
- ssims_TCTV=temp;ssims_FTCTV=temp;ssims_HTCTV=temp; ssims_CTCTV=temp; ssims_WTCTV=temp; ssims_GTCTV=temp;
- fsims_TCTV=temp;fsims_FTCTV=temp;fsims_HTCTV=temp; fsims_CTCTV=temp; fsims_WTCTV=temp; fsims_GTCTV=temp;
- ergas_TCTV=temp;ergas_FTCTV=temp;ergas_HTCTV=temp; ergas_CTCTV=temp; ergas_WTCTV=temp; ergas_GTCTV=temp;
- sams_TCTV=temp;sams_FTCTV=temp;sams_HTCTV=temp; sams_CTCTV=temp; sams_WTCTV=temp; sams_GTCTV=temp;
- times_TCTV=temp;times_FTCTV=temp;times_HTCTV=temp; times_CTCTV=temp; times_WTCTV=temp; times_GTCTV=temp;
- Temp=cell(length(seq3),1);
- Orig_Multi=Temp;Noisy_Multi=Temp;TCTV_Multi=Temp;FTCTV_Multi=Temp;HTCTV_Multi=Temp;CTCTV_Multi=Temp;WTCTV_Multi=Temp;GTCTV_Multi=Temp;
- C = cell(1,20);
- iter=1;
- sum_iter = 50;
- sum_time = 0;
- % for tau_1 = [1,2,3,4,5,6,7,8,9,10]
- % for tau_1 = [0.1,0.2,0.3,0.4,0.5]
- for tau_1 = [0.1, 0.5, 1, 2, 3, 4, 5 ]
- % for tau_2 = [1,2,3,4,5,6,7,8,9,10]
- % for tau_2 = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]
- for tau_2 = [0.1, 0.5, 1, 2, 3, 4, 5]
- start_tic = tic;
- %% Perform recovery
- for i = 5
- % 1 for balloons 2 for beads
- % 3 for cd 4 for chart
- % 5 for clay 6 for cloth
- % 7 for egyptian 8 for feathers
- % 9 for flowers 10 for glass
- %% load data
- fname = seq3(i).name;
- pic_TNN_Weight_Lame = [datadir '/' fname];
- load(fname)
- %% 0-1 Centralization
- data_min = min(X(:));
- data_max = max(X(:));
- X = (X - data_min) / (data_max - data_min);
- %% add noise
- % [n1,n2,n3] = size(X);
- % Xn = X; Yn=reshape(Xn,[n1*n2,n3]);
- % ind = find(rand(n1*n2,1)<rhos);
- % Yn(ind,:)=rand(length(ind),n3);
- % Xn=reshape(Yn,[n1,n2,n3]);
- [height, width, band] = size(X);
- for ii = 1:band
- Xn(:,:,ii) = imnoise(X(:,:,ii), 'salt & pepper', rhos);
- end
- methods_index = 1;
- %% Method 1: TCTV
- % disp('......Run TCTV......')
- % opts = [];
- % opts.rho = 1.25;
- % opts.directions = [1,2,3]; % consider the lowrankness and smoothness both along the spatial and spectral directions
- % tic
- % Xhat_TCTV = TCTV_TRPCA(Xn, opts);
- % times_TCTV(i) = toc;
- % [psnrs_TCTV(i), ssims_TCTV(i), fsims_TCTV(i), ergas_TCTV(i), sams_TCTV(i)] = HSI_QA(X * 255, Xhat_TCTV* 255);
- % % TCTV_psnr = psnr(X , Xhat_TCTV);
- % Xhat{methods_index}=Xhat_TCTV;
- % div{methods_index}=1-abs((X-Xhat_TCTV));
- % methods_index = methods_index+1;
- % %% Method 2: FTCTV Enhanced Fair
- % disp('......Run FTCTV......')
- % opts = [];
- % opts.rho = 1.25;
- % opts.directions = [1,2,3]; % consider the lowrankness and smoothness both along the spatial and spectral directions
- % opts.tau_F=[tau_1 tau_1, tau_1];
- % opts.tauL1=tau_2;
- % tic
- % Xhat_FTCTV = FTCTV_TRPCA(Xn, opts);
- % times_FTCTV(i) = toc;
- % [psnrs_FTCTV(i), ssims_FTCTV(i), fsims_FTCTV(i), ergas_FTCTV(i), sams_FTCTV(i)] = HSI_QA(X * 255, Xhat_FTCTV * 255);
- % Xhat{methods_index}=Xhat_FTCTV;
- % div{methods_index}=1-abs((X-Xhat_FTCTV));
- % methods_index = methods_index+1;
- %
- % %% Method 3: HTCTV Enhanced Huber
- % disp('......Run HTCTV......')
- % opts = [];
- % opts.rho = 1.25;
- % opts.directions = [1,2,3]; % consider the lowrankness and smoothness both along the spatial and spectral directions
- % opts.tau_F=[tau_1 tau_1, tau_1];
- % opts.tauL1=tau_2;
- % tic
- % Xhat_HTCTV = HTCTV_TRPCA(Xn, opts);
- % times_HTCTV(i) = toc;
- % [psnrs_HTCTV(i), ssims_HTCTV(i), fsims_HTCTV(i), ergas_HTCTV(i), sams_HTCTV(i)] = HSI_QA(X * 255, Xhat_HTCTV * 255);
- % Xhat{methods_index}=Xhat_HTCTV;
- % div{methods_index}=1-abs((X-Xhat_HTCTV));
- % methods_index = methods_index+1;
- %
- % %% Method 4: CTCTV Enhanced Cauchy
- % disp('......Run CTCTV......')
- % opts = [];
- % opts.rho = 1.25;
- % opts.directions = [1,2,3]; % consider the lowrankness and smoothness both along the spatial and spectral directions
- % opts.tau_F=[tau_1 tau_1, tau_1];
- % opts.tauL1=tau_2;
- % tic
- % Xhat_CTCTV = CTCTV_TRPCA(Xn, opts);
- % times_CTCTV(i) = toc;
- % [psnrs_CTCTV(i), ssims_CTCTV(i), fsims_CTCTV(i), ergas_CTCTV(i), sams_CTCTV(i)] = HSI_QA(X * 255, Xhat_CTCTV * 255);
- % Xhat{methods_index}=Xhat_CTCTV;
- % div{methods_index}=1-abs((X-Xhat_CTCTV));
- % methods_index = methods_index+1;
- %
- % %% Method 5: WTCTV Enhanced Welsch
- % disp('......Run WTCTV......')
- % opts = [];
- % opts.rho = 1.25;
- % opts.directions = [1,2,3]; % consider the lowrankness and smoothness both along the spatial and spectral directions
- % opts.tau_F=[tau_1 tau_1, tau_1];
- % opts.tauL1=tau_2;
- % tic
- % Xhat_WTCTV = WTCTV_TRPCA(Xn, opts);
- % times_WTCTV(i) = toc;
- % [psnrs_WTCTV(i), ssims_WTCTV(i), fsims_WTCTV(i), ergas_WTCTV(i), sams_WTCTV(i)] = HSI_QA(X * 255, Xhat_WTCTV * 255);
- % Xhat{methods_index}=Xhat_WTCTV;
- % div{methods_index}=1-abs((X-Xhat_WTCTV));
- % methods_index = methods_index+1;
- %% Method 6: GTCTV Enhanced General loss
- disp('......Run GTCTV......')
- opts = [];
- opts.rho = 1.25;
- opts.directions = [1,2,3]; % consider the lowrankness and smoothness both along the spatial and spectral directions
- opts.tau_F=[tau_1 tau_1, tau_1];
- opts.tauL1=tau_2;
- General_option = 2;
- % 2 for Enhanced Geman-McClure loss
- % 1 for Enhanced Cauchy loss
- tic
- Xhat_GTCTV = GTCTV_TRPCA(Xn, opts ,General_option);
- times_GTCTV(i) = toc;
- [psnrs_GTCTV(i), ssims_GTCTV(i), fsims_GTCTV(i), ergas_GTCTV(i), sams_GTCTV(i)] = HSI_QA(X * 255, Xhat_GTCTV * 255);
- Xhat{methods_index}=Xhat_GTCTV;
- div{methods_index}=1-abs((X-Xhat_GTCTV));
- methods_index = methods_index+1;
- % fprintf('\n %d-th image, TCTV psnr=%.4f, ssim=%.4f, fsim=%.4f\n',i, psnrs_TCTV(i),ssims_TCTV(i),fsims_TCTV(i));
- % fprintf('\n FTCTV psnr=%.4f, ssim=%.4f, fsim=%.4f\n', psnrs_FTCTV(i),ssims_FTCTV(i),fsims_FTCTV(i));
- % fprintf('\n HTCTV psnr=%.4f, ssim=%.4f, fsim=%.4f\n', psnrs_HTCTV(i),ssims_HTCTV(i),fsims_HTCTV(i));
- % fprintf('\n CTCTV psnr=%.4f, ssim=%.4f, fsim=%.4f\n', psnrs_CTCTV(i),ssims_CTCTV(i),fsims_CTCTV(i));
- % fprintf('\n WTCTV psnr=%.4f, ssim=%.4f, fsim=%.4f\n', psnrs_WTCTV(i),ssims_WTCTV(i),fsims_WTCTV(i));
- % fprintf('\n GTCTV psnr=%.4f, ssim=%.4f, fsim=%.4f\n', psnrs_GTCTV(i),ssims_GTCTV(i),fsims_GTCTV(i));
-
- psnrs_i=[psnrs_TCTV(i),psnrs_FTCTV(i),psnrs_HTCTV(i),psnrs_CTCTV(i),psnrs_WTCTV(i),psnrs_GTCTV(i)];
- ssims_i=[ssims_TCTV(i),ssims_FTCTV(i),ssims_HTCTV(i),ssims_CTCTV(i),ssims_WTCTV(i),ssims_GTCTV(i)];
- ergas_i=[ergas_TCTV(i),ergas_FTCTV(i),ergas_HTCTV(i),ergas_CTCTV(i),ergas_WTCTV(i),ergas_GTCTV(i)];
-
- disp(['PSNR_i= ',num2str(psnrs_i)])
- disp(['SSIM_i= ',num2str(ssims_i)])
- disp(['ERGAS_i= ',num2str(ergas_i)])
-
- % Orig_Multi{i}=X;Noisy_Multi{i}=Xn;TCTV_Multi{i}=Xhat_TCTV;FTCTV_Multi{i}=Xhat_FTCTV;HTCTV_Multi{i}=Xhat_HTCTV;
- % j=1;
- end
- methodName={'TCTV','FTCTV','HTCTV','CTCTV','WTCTV','GTCTV'};
- enList=[1,2,3,4,5,6];
- psnrs_all=[psnrs_TCTV,psnrs_FTCTV,psnrs_HTCTV,psnrs_CTCTV,psnrs_WTCTV,psnrs_GTCTV];
- psnrs_mean=mean(psnrs_all,1);
- ssims_all=[ssims_TCTV,ssims_FTCTV,ssims_HTCTV,ssims_CTCTV,ssims_WTCTV,ssims_GTCTV];
- ssims_mean=mean(ssims_all,1);
- fsims_all=[fsims_TCTV,fsims_FTCTV,fsims_HTCTV,fsims_CTCTV,fsims_WTCTV,fsims_GTCTV];
- fsims_mean=mean(fsims_all,1);
- ergas_all=[ergas_TCTV,ergas_FTCTV,ergas_HTCTV,ergas_CTCTV,ergas_WTCTV,ergas_GTCTV];
- ergas_mean=mean(ergas_all,1);
- times_all=[times_TCTV,times_FTCTV,times_HTCTV,times_CTCTV,times_WTCTV,times_GTCTV];
- times_mean=mean(times_all,1);
- C{iter} = {psnrs_mean, ssims_mean, fsims_mean, ergas_mean, tau_1, tau_2};
- epoch_time = toc(start_tic);
- sum_time = sum_time+epoch_time;
- fprintf('Progress:%d/%d. Epoch Time:%.2f. Progress Time:%.2f. Time needs:%.2f.\n',iter,sum_iter,epoch_time/60,sum_time/60,((sum_time)/iter)*(sum_iter-iter)/60);
- iter = iter+1;
- end
- end
- %% Show results
- showHSIResult(Xhat,X,Xn,div,methodName,enList,31,31);
复制代码 免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |