1.数据集简介、训练集与测试集分别
2.模子相干知识
3.model.py——定义ResNet50网络模子
4.train.py——加载数据集并训练,训练集盘算丧失值loss,测试集盘算accuracy,生存训练好的网络参数
5.predict.py——使用训练好的网络参数后,用自己找的图像举行分类测试
一、数据集简介
1.自建数据文件夹
起首确定这次分类种类,采用爬虫、官网数据集和自己照相的照片获取5类,新建个文件夹data,内里包含5个文件夹,文件夹名字取种类英文,每个文件夹照片数目最好一样多,五百多张以上。如我选了雏菊,蒲公英,玫瑰,向日葵,郁金香5类,如下图,每种类型有600~900张图像。如下图
花数据集下载链接https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz
2.分别训练集与测试集
这是分别数据集代码,同一目次下运,复制改文件夹路径。
- import os
- from shutil import copy
- import random
- def mkfile(file):
- if not os.path.exists(file):
- os.makedirs(file)
- # 获取 photos 文件夹下除 .txt 文件以外所有文件夹名(即3种分类的类名)
- file_path = 'data/flower_photos'
- flower_class = [cla for cla in os.listdir(file_path) if ".txt" not in cla]
- # 创建 训练集train 文件夹,并由3种类名在其目录下创建3个子目录
- mkfile('flower_data/train')
- for cla in flower_class:
- mkfile('flower_data/train/' + cla)
- # 创建 验证集val 文件夹,并由3种类名在其目录下创建3个子目录
- mkfile('flower_data/val')
- for cla in flower_class:
- mkfile('flower_data/val/' + cla)
- # 划分比例,训练集 : 验证集 = 9 : 1
- split_rate = 0.1
- # 遍历3种花的全部图像并按比例分成训练集和验证集
- for cla in flower_class:
- cla_path = file_path + '/' + cla + '/' # 某一类别动作的子目录
- images = os.listdir(cla_path) # iamges 列表存储了该目录下所有图像的名称
- num = len(images)
- eval_index = random.sample(images, k=int(num * split_rate)) # 从images列表中随机抽取 k 个图像名称
- for index, image in enumerate(images):
- # eval_index 中保存验证集val的图像名称
- if image in eval_index:
- image_path = cla_path + image
- new_path = 'flower_data/val/' + cla
- copy(image_path, new_path) # 将选中的图像复制到新路径
- # 其余的图像保存在训练集train中
- else:
- image_path = cla_path + image
- new_path = 'flower_data/train/' + cla
- copy(image_path, new_path)
- print("\r[{}] processing [{}/{}]".format(cla, index + 1, num), end="") # processing bar
- print()
- print("processing done!")
复制代码 二、模子相干知识
之前有文章先容模子,如果不清晰可以点下链接转过去学习。
深度学习卷积神经网络CNN之ResNet模子网络详解说明(超具体理论篇)
三、model.py——定义ResNet50网络模子
- import torch.nn as nn
- import torch
- class BasicBlock(nn.Module):
- expansion = 1
- def __init__(self, in_channel, out_channel, stride=1, downsample=None, **kwargs):
- super(BasicBlock, self).__init__()
- self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
- kernel_size=3, stride=stride, padding=1, bias=False)
- self.bn1 = nn.BatchNorm2d(out_channel)
- self.relu = nn.ReLU()
- self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
- kernel_size=3, stride=1, padding=1, bias=False)
- self.bn2 = nn.BatchNorm2d(out_channel)
- self.downsample = downsample
- def forward(self, x):
- identity = x
- if self.downsample is not None:
- identity = self.downsample(x)
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- out += identity
- out = self.relu(out)
- return out
- class Bottleneck(nn.Module):
- """
- 注意:原论文中,在虚线残差结构的主分支上,第一个1x1卷积层的步距是2,第二个3x3卷积层步距是1。
- 但在pytorch官方实现过程中是第一个1x1卷积层的步距是1,第二个3x3卷积层步距是2,
- 这么做的好处是能够在top1上提升大概0.5%的准确率。
- 可参考Resnet v1.5 https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch
- """
- expansion = 4
- def __init__(self, in_channel, out_channel, stride=1, downsample=None,
- groups=1, width_per_group=64):
- super(Bottleneck, self).__init__()
- width = int(out_channel * (width_per_group / 64.)) * groups
- self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=width,
- kernel_size=1, stride=1, bias=False) # squeeze channels
- self.bn1 = nn.BatchNorm2d(width)
- # -----------------------------------------
- self.conv2 = nn.Conv2d(in_channels=width, out_channels=width, groups=groups,
- kernel_size=3, stride=stride, bias=False, padding=1)
- self.bn2 = nn.BatchNorm2d(width)
- # -----------------------------------------
- self.conv3 = nn.Conv2d(in_channels=width, out_channels=out_channel*self.expansion,
- kernel_size=1, stride=1, bias=False) # unsqueeze channels
- self.bn3 = nn.BatchNorm2d(out_channel*self.expansion)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = downsample
- def forward(self, x):
- identity = x
- if self.downsample is not None:
- identity = self.downsample(x)
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
- out = self.conv3(out)
- out = self.bn3(out)
- out += identity
- out = self.relu(out)
- return out
- class ResNet(nn.Module):
- def __init__(self,
- block,
- blocks_num,
- num_classes=1000,
- include_top=True,
- groups=1,
- width_per_group=64):
- super(ResNet, self).__init__()
- self.include_top = include_top
- self.in_channel = 64
- self.groups = groups
- self.width_per_group = width_per_group
- self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
- padding=3, bias=False)
- self.bn1 = nn.BatchNorm2d(self.in_channel)
- self.relu = nn.ReLU(inplace=True)
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- self.layer1 = self._make_layer(block, 64, blocks_num[0])
- self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)
- self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)
- self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)
- if self.include_top:
- self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # output size = (1, 1)
- self.fc = nn.Linear(512 * block.expansion, num_classes)
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
- def _make_layer(self, block, channel, block_num, stride=1):
- downsample = None
- if stride != 1 or self.in_channel != channel * block.expansion:
- downsample = nn.Sequential(
- nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
- nn.BatchNorm2d(channel * block.expansion))
- layers = []
- layers.append(block(self.in_channel,
- channel,
- downsample=downsample,
- stride=stride,
- groups=self.groups,
- width_per_group=self.width_per_group))
- self.in_channel = channel * block.expansion
- for _ in range(1, block_num):
- layers.append(block(self.in_channel,
- channel,
- groups=self.groups,
- width_per_group=self.width_per_group))
- return nn.Sequential(*layers)
- def forward(self, x):
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- x = self.maxpool(x)
- x = self.layer1(x)
- x = self.layer2(x)
- x = self.layer3(x)
- x = self.layer4(x)
- if self.include_top:
- x = self.avgpool(x)
- x = torch.flatten(x, 1)
- x = self.fc(x)
- return x
- def resnet34(num_classes=1000, include_top=True):
- # https://download.pytorch.org/models/resnet34-333f7ec4.pth
- return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)
- def resnet50(num_classes=1000, include_top=True):
- # https://download.pytorch.org/models/resnet50-19c8e357.pth
- return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)
- def resnet101(num_classes=1000, include_top=True):
- # https://download.pytorch.org/models/resnet101-5d3b4d8f.pth
- return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)
- def resnext50_32x4d(num_classes=1000, include_top=True):
- # https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth
- groups = 32
- width_per_group = 4
- return ResNet(Bottleneck, [3, 4, 6, 3],
- num_classes=num_classes,
- include_top=include_top,
- groups=groups,
- width_per_group=width_per_group)
- def resnext101_32x8d(num_classes=1000, include_top=True):
- # https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth
- groups = 32
- width_per_group = 8
- return ResNet(Bottleneck, [3, 4, 23, 3],
- num_classes=num_classes,
- include_top=include_top,
- groups=groups,
- width_per_group=width_per_group)
复制代码 四、model.py——定义ResNet34网络模子
batch_size = 16
epochs = 5
- import os
- import sys
- import json
- import torch
- import torch.nn as nn
- import torch.optim as optim
- from torchvision import transforms, datasets
- from tqdm import tqdm
- from model import resnet50
- def main():
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
- print("using {} device.".format(device))
- data_transform = {
- "train": transforms.Compose([transforms.RandomResizedCrop(224),
- transforms.RandomHorizontalFlip(),
- transforms.ToTensor(),
- transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
- "val": transforms.Compose([transforms.Resize(256),
- transforms.CenterCrop(224),
- transforms.ToTensor(),
- transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}
- data_root = os.path.abspath(os.path.join(os.getcwd(), "../..")) # get data root path
- image_path = os.path.join(data_root, "zjdata", "flower_data") # flower data set path
- assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
- train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
- transform=data_transform["train"])
- train_num = len(train_dataset)
- # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
- flower_list = train_dataset.class_to_idx
- cla_dict = dict((val, key) for key, val in flower_list.items())
- # write dict into json file
- json_str = json.dumps(cla_dict, indent=4)
- with open('class_indices.json', 'w') as json_file:
- json_file.write(json_str)
- batch_size = 16
- nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
- print('Using {} dataloader workers every process'.format(nw))
- train_loader = torch.utils.data.DataLoader(train_dataset,
- batch_size=batch_size, shuffle=True,
- num_workers=0)
- validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
- transform=data_transform["val"])
- val_num = len(validate_dataset)
- validate_loader = torch.utils.data.DataLoader(validate_dataset,
- batch_size=batch_size, shuffle=False,
- num_workers=nw)
- print("using {} images for training, {} images for validation.".format(train_num,
- val_num))
-
- net = resnet50(num_classes=5, include_top=True)
- net.to(device)
- # define loss function
- loss_function = nn.CrossEntropyLoss()
- # construct an optimizer
- params = [p for p in net.parameters() if p.requires_grad]
- optimizer = optim.Adam(params, lr=0.1)
- epochs = 5
- best_acc = 0.0
- save_path = './resNet50.pth'
- train_steps = len(train_loader)
- for epoch in range(epochs):
- # train
- net.train()
- running_loss = 0.0
- train_bar = tqdm(train_loader, file=sys.stdout)
- for step, data in enumerate(train_bar):
- images, labels = data
- optimizer.zero_grad()
- logits = net(images.to(device))
- loss = loss_function(logits, labels.to(device))
- loss.backward()
- optimizer.step()
- # print statistics
- running_loss += loss.item()
- train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
- epochs,
- loss)
- # validate
- net.eval()
- acc = 0.0 # accumulate accurate number / epoch
- with torch.no_grad():
- val_bar = tqdm(validate_loader, file=sys.stdout)
- for val_data in val_bar:
- val_images, val_labels = val_data
- outputs = net(val_images.to(device))
- # loss = loss_function(outputs, test_labels)
- predict_y = torch.max(outputs, dim=1)[1]
- acc += torch.eq(predict_y, val_labels.to(device)).sum().item()
- val_bar.desc = "valid epoch[{}/{}]".format(epoch + 1,
- epochs)
- val_accurate = acc / val_num
- print('[epoch %d] train_loss: %.3f val_accuracy: %.3f' %
- (epoch + 1, running_loss / train_steps, val_accurate))
- if val_accurate > best_acc:
- best_acc = val_accurate
- torch.save(net.state_dict(), save_path)
- print('Finished Training')
- if __name__ == '__main__':
- main()
复制代码 训练中截图
五、predict.py——使用训练好的网络参数后,用自己找的图像举行分类测试
- import os
- import json
- import torch
- from PIL import Image
- from torchvision import transforms
- import matplotlib.pyplot as plt
- from model import resnet34
- def main():
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
- data_transform = transforms.Compose(
- [transforms.Resize(256),
- transforms.CenterCrop(224),
- transforms.ToTensor(),
- transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
- # load image
- img_path = "./1.jpg"
- assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
- img = Image.open(img_path)
- plt.imshow(img)
- # [N, C, H, W]
- img = data_transform(img)
- # expand batch dimension
- img = torch.unsqueeze(img, dim=0)
- # read class_indict
- json_path = './class_indices.json'
- assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)
- with open(json_path, "r") as f:
- class_indict = json.load(f)
- # create model
- model = resnet34(num_classes=5).to(device)
- # load model weights
- weights_path = "./resNet50.pth"
- assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
- model.load_state_dict(torch.load(weights_path, map_location=device))
- # prediction
- model.eval()
- with torch.no_grad():
- # predict class
- output = torch.squeeze(model(img.to(device))).cpu()
- predict = torch.softmax(output, dim=0)
- predict_cla = torch.argmax(predict).numpy()
- print_res = "class: {} prob: {:.3}".format(class_indict[str(predict_cla)],
- predict[predict_cla].numpy())
- plt.title(print_res)
- for i in range(len(predict)):
- print("class: {:10} prob: {:.3}".format(class_indict[str(i)],
- predict[i].numpy()))
- plt.show()
- if __name__ == '__main__':
- main()
复制代码 免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |