前言:通道数与张量外形都在数值3和4之间变换,容易混淆。
1.通道数:
1.1 channel = 3
RGB 图像具有 3 个通道(红色、绿色和蓝色)。
1.2 channel = 4
Stable Diffusion has 4 latent channels。
怎样理解卷积神经网络中的通道(channel)
2.张量外形
2.1 3D 张量
外形为 (C, H, W),此中 C 是通道数,H 是高度,W 是宽度。这实用于单个图像。
2.2 4D 张量
2.2.1 通常
外形为 (B, C, H, W),此中 B 是批次大小,C 是通道数,H 是高度,W 是宽度。这实用于多个图像(比方,批量处理)。
2.2.2 stable diffusion
在img2img中,将image用vae编码并按照timestep加噪:
- # This code copyed from diffusers.pipline_controlnet_img2img.py
- # 6. Prepare latent variables
- latents = self.prepare_latents(
- image,
- latent_timestep,
- batch_size,
- num_images_per_prompt,
- prompt_embeds.dtype,
- device,
- generator,
- )
复制代码 image的dim(维度)是3,而latents的dim为4。
让我们先看text2img的prepare_latents函数:
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
- def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
- shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
- if isinstance(generator, list) and len(generator) != batch_size:
- raise ValueError(
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
- )
- if latents is None:
- latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
- else:
- latents = latents.to(device)
- # scale the initial noise by the standard deviation required by the scheduler
- latents = latents * self.scheduler.init_noise_sigma
- return latents
复制代码 显然,shape已经规定了latents的dim(4)和排列次序。
在img2img中:
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents
- def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
- if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
- raise ValueError(
- f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
- )
- image = image.to(device=device, dtype=dtype)
- batch_size = batch_size * num_images_per_prompt
- if image.shape[1] == 4:
- init_latents = image
- else:
- if isinstance(generator, list) and len(generator) != batch_size:
- raise ValueError(
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
- )
- elif isinstance(generator, list):
- init_latents = [
- self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
- ]
- init_latents = torch.cat(init_latents, dim=0)
- else:
- init_latents = self.vae.encode(image).latent_dist.sample(generator)
- init_latents = self.vae.config.scaling_factor * init_latents
- if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
- # expand init_latents for batch_size
- deprecation_message = (
- f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
- " images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
- " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
- " your script to pass as many initial images as text prompts to suppress this warning."
- )
- deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
- additional_image_per_prompt = batch_size // init_latents.shape[0]
-
- init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
- elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
- raise ValueError(
- f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
- )
- else:
- init_latents = torch.cat([init_latents], dim=0)
- shape = init_latents.shape
- noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
- # get latents
- init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
- latents = init_latents
- return latents
复制代码 3.应用
3.1 问题
- new_map = texture.permute(1, 2, 0)
- RuntimeError: permute(sparse_coo): number of dimensions in the tensor input does not match the length of the desired ordering of dimensions i.e. input.dim() = 4 is not equal to len(dims) = 3
复制代码 该问题是张量外形的问题,跟通道数毫无关系。
3.2 举例
问:4D 张量:外形为 (B, C, H, W),此中C可以为3吗?
答:4D 张量的外形为 (B,C,H,W),此中 C 表示通道数。通常环境下,C 可以为 3,这对应于 RGB 图像的三个颜色通道(红色、绿色和蓝色)。
3.3 张量可以理解为多维可变数组
- print("sample:", sample.shape)
- print("sample:", sample[0].shape)
- print("sample:", sample[0][0].shape)
复制代码- >>
- sample: torch.Size([10, 4, 96, 96])
- sample: torch.Size([4, 96, 96])
- sample: torch.Size([96, 96])
复制代码 由此可见,可以将张量外形为torch.size([10, 4, 96, 96])理解为一个4维可变数组。
3.4 将张量化为list
3.4.1
- # sample: torch.Size([10, 4, 96, 96])
- views = [view for view in sample]
- print("views:", views.shape)
复制代码- >>AttributeError: 'list' object has no attribute 'shape'
复制代码 此时应该:
- print("views:", views[0].shape)
复制代码- >>views: torch.Size([4, 96, 96])
复制代码 3.4.2
- # 方法二
- for i, view in enumerate(prev_views):
- pred_prev_sample[i] = view
复制代码 3.5 将list化为张量
3.5.1
- # 定义一个Python列表
- my_list = [1, 2, 3, 4, 5]
- # 将Python列表转换为PyTorch张量
- my_tensor = torch.tensor(my_list)
- print(my_tensor)
复制代码- >>tensor([1, 2, 3, 4, 5])
复制代码 3.5.2
- # 假设你有一个包含多个张量的列表
- tensor_list = [torch.tensor([1, 2, 3]), torch.tensor([4, 5, 6]), torch.tensor([7, 8, 9])]
- # 使用torch.stack将它们堆叠成一个新的张量
- stacked_tensor = torch.stack(tensor_list)
- print(stacked_tensor)
复制代码- >>tensor([[1, 2, 3],
- [4, 5, 6],
- [7, 8, 9]])
复制代码 张量运算时对轴参数的设定非经常见,在 Numpy 中一般是参数axis,在 Pytorch 中一般是参数dim,但它们寄义是一样的。
深度学习中的轴/axis/dim全解
- # 默认情况下,它在新的维度(即0维)上堆叠这些张量。
- # views is a list,and views[0].shape is ([4, 96, 96]).
- views = torch.stack(views, axis=0) # ([10, 4, 96, 96])
复制代码 3.5.3 沿着现有维度拼接/在新的维度上增长维度
- import torch
- # 假设你有一个包含多个张量的列表
- tensor_list = [torch.tensor([1, 2, 3]), torch.tensor([4, 5, 6]), torch.tensor([7, 8, 9])]
- # 使用 torch.cat 将张量沿着现有维度拼接
- concatenated_tensor = torch.cat(tensor_list, dim=0)
- # 使用 torch.unsqueeze 在新的维度上增加维度
- stacked_tensor = torch.unsqueeze(concatenated_tensor, dim=0)
复制代码 免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |