限流系列
开源组件 rate-limit: 限流
高可用之限流-01-入门介绍
高可用之限流-02-怎样计划限流框架
高可用之限流-03-Semaphore 信号量做限流
高可用之限流-04-fixed window 固定窗口
高可用之限流-05-slide window 滑动窗口
高可用之限流-06-slide window 滑动窗口 sentinel 源码
高可用之限流-07-token bucket 令牌桶算法
高可用之限流 08-leaky bucket漏桶算法
高可用之限流 09-guava RateLimiter 入门利用简介 & 源码分析
RateLimiter 入门利用
maven 引入
- <dependency>
- <groupId>com.google.guava</groupId>
- <artifactId>guava</artifactId>
- <version>18.0</version>
- </dependency>
复制代码 测试案例
- @Test
- public void limitTest() {
- RateLimiter limiter = RateLimiter.create(1);
- for(int i = 1; i < 5; i++) {
- double waitTime = limiter.acquire(i);
- System.out.println("cutTime=" + System.currentTimeMillis() + " acq:" + i + " waitTime:" + waitTime);
- }
- }
复制代码- cutTime=1592880664419 acq:1 waitTime:0.0
- cutTime=1592880665420 acq:2 waitTime:0.999098
- cutTime=1592880667419 acq:3 waitTime:1.99867
- cutTime=1592880670419 acq:4 waitTime:2.999099
复制代码 说明
首先通过RateLimiter.create(1);创建一个限流器,参数代表每秒生成的令牌数,通过limiter.acquire(i);来以阻塞的方式获取令牌,固然也可以通过tryAcquire(int permits, long timeout, TimeUnit unit)来设置等待超时时间的方式获取令牌,如果超timeout为0,则代表非阻塞,获取不到立即返回。
从输出来看,RateLimiter支持预消耗,好比在acquire(5)时,等待时间是3秒,是上一个获取令牌时预消耗了3个两排,固须要等待3*1秒,然后又预消耗了5个令牌,以此类推
RateLimiter通过限定后面请求的等待时间,来支持一定程度的突发请求(预消耗),在利用过程中须要注意这一点,具体实现原理后面再分析。
RateLimiter实现原理
Guava有两种限流模式,一种为稳定模式(SmoothBursty:令牌生成速度恒定),一种为渐进模式(SmoothWarmingUp:令牌生成速度缓慢提拔直到维持在一个稳定值) 两种模式实现思路雷同,主要区别在等待时间的盘算上,本篇重点介绍SmoothBursty
RateLimiter的创建
通过调用RateLimiter的create接口来创建实例,实际是调用的SmoothBuisty稳定模式创建的实例。- public static RateLimiter create(double permitsPerSecond) {
- return create(permitsPerSecond, SleepingStopwatch.createFromSystemTimer());
- }
- static RateLimiter create(double permitsPerSecond, SleepingStopwatch stopwatch) {
- RateLimiter rateLimiter = new SmoothBursty(stopwatch, 1.0 /* maxBurstSeconds */);
- rateLimiter.setRate(permitsPerSecond);
- return rateLimiter;
- }
复制代码 SmoothBursty中的两个构造参数含义:
SleepingStopwatch:guava中的一个时钟类实例,会通过这个来盘算时间及令牌
maxBurstSeconds:官方解释,在ReteLimiter未利用时,最多保存几秒的令牌,默认是1
在剖析SmoothBursty原理前,重点解释下SmoothBursty中几个属性的含义- /**
- * The work (permits) of how many seconds can be saved up if this RateLimiter is unused?
- * 在RateLimiter未使用时,最多存储几秒的令牌
- * */
- final double maxBurstSeconds;
-
- /**
- * The currently stored permits.
- * 当前存储令牌数
- */
- double storedPermits;
- /**
- * The maximum number of stored permits.
- * 最大存储令牌数 = maxBurstSeconds * stableIntervalMicros(见下文)
- */
- double maxPermits;
- /**
- * The interval between two unit requests, at our stable rate. E.g., a stable rate of 5 permits
- * per second has a stable interval of 200ms.
- * 添加令牌时间间隔 = SECONDS.toMicros(1L) / permitsPerSecond;(1秒/每秒的令牌数)
- */
- double stableIntervalMicros;
- /**
- * The time when the next request (no matter its size) will be granted. After granting a request,
- * this is pushed further in the future. Large requests push this further than small requests.
- * 下一次请求可以获取令牌的起始时间
- * 由于RateLimiter允许预消费,上次请求预消费令牌后
- * 下次请求需要等待相应的时间到nextFreeTicketMicros时刻才可以获取令牌
- */
- private long nextFreeTicketMicros = 0L; // could be either in the past or future
复制代码 核心函数
setRate()
通过这个接口设置令牌通每秒生成令牌的数目,内部时间通过调用SmoothRateLimiter的doSetRate来实现- public final void setRate(double permitsPerSecond) {
- checkArgument(
- permitsPerSecond > 0.0 && !Double.isNaN(permitsPerSecond), "rate must be positive");
- synchronized (mutex()) {
- doSetRate(permitsPerSecond, stopwatch.readMicros());
- }
- }
复制代码 doSetRate()
这里先通过调用resync生成令牌以及更新下一期令牌生成时间,然后更新stableIntervalMicros,最后又调用了SmoothBursty的doSetRate- @Override
- final void doSetRate(double permitsPerSecond, long nowMicros) {
- resync(nowMicros);
- double stableIntervalMicros = SECONDS.toMicros(1L) / permitsPerSecond;
- this.stableIntervalMicros = stableIntervalMicros;
- doSetRate(permitsPerSecond, stableIntervalMicros);
- }
复制代码 resync()
- /**
- * Updates {@code storedPermits} and {@code nextFreeTicketMicros} based on the current time.
- * 基于当前时间,更新下一次请求令牌的时间,以及当前存储的令牌(可以理解为生成令牌)
- */
- void resync(long nowMicros) {
- // if nextFreeTicket is in the past, resync to now
- if (nowMicros > nextFreeTicketMicros) {
- double newPermits = (nowMicros - nextFreeTicketMicros) / coolDownIntervalMicros();
- storedPermits = min(maxPermits, storedPermits + newPermits);
- nextFreeTicketMicros = nowMicros;
- }
- }
复制代码 根据令牌桶算法,桶中的令牌是连续生成存放的,有请求时须要先从桶中拿到令牌才气开始执行,谁来连续生成令牌存放呢?
一种解法是,开启一个定时任务,由定时任务连续生成令牌。这样的问题在于会极大的消耗体系资源,如,某接口须要分别对每个用户做访问频率限定,假设体系中存在6W用户,则至多须要开启6W个定时任务来维持每个桶中的令牌数,这样的开销是巨大的。
另一种解法则是耽误盘算,如上resync函数。该函数会在每次获取令牌之前调用,实在现思路为,若当前时间晚于nextFreeTicketMicros,则盘算该段时间内可以生成多少令牌,将生成的令牌加入令牌桶中并更新数据。这样一来,只须要在获取令牌时盘算一次即可。
SmoothBursty 的 doSetRate
桶中可存放的最大令牌数由maxBurstSeconds盘算而来,其含义为最大存储maxBurstSeconds秒生成的令牌。
该参数的作用在于,可以更为灵活地控制流量。如,某些接口限定为300次/20秒,某些接口限定为50次/45秒等。也就是流量不局限于qps
作者:人在码途
链接:https://www.jianshu.com/p/5d4fe4b2a726
来源:简书
著作权归作者所有。商业转载请接洽作者获得授权,非商业转载请注明出处。- @Override
- void doSetRate(double permitsPerSecond, double stableIntervalMicros) {
- double oldMaxPermits = this.maxPermits;
- maxPermits = maxBurstSeconds * permitsPerSecond;
- if (oldMaxPermits == Double.POSITIVE_INFINITY) {
- // if we don't special-case this, we would get storedPermits == NaN, below
- // Double.POSITIVE_INFINITY 代表无穷啊
- storedPermits = maxPermits;
- } else {
- storedPermits =
- (oldMaxPermits == 0.0)
- ? 0.0 // initial state
- : storedPermits * maxPermits / oldMaxPermits;
- }
- }
复制代码 RateLimiter 几个常用接口分析
在相识以上概念后,就非常轻易理解 RateLimiter 暴露出来的接口- @CanIgnoreReturnValue
- public double acquire() {
- return acquire(1);
- }
- /**
- * 获取令牌,返回阻塞的时间
- **/
- @CanIgnoreReturnValue
- public double acquire(int permits) {
- long microsToWait = reserve(permits);
- stopwatch.sleepMicrosUninterruptibly(microsToWait);
- return 1.0 * microsToWait / SECONDS.toMicros(1L);
- }
- final long reserve(int permits) {
- checkPermits(permits);
- synchronized (mutex()) {
- return reserveAndGetWaitLength(permits, stopwatch.readMicros());
- }
- }
复制代码 acquire函数主要用于获取permits个令牌,并盘算须要等待多长时间,进而挂起等待,并将该值返回,主要通过reserve返回须要等待的时间,reserve中通过调用reserveAndGetWaitLength获取等待时间- /**
- * Reserves next ticket and returns the wait time that the caller must wait for.
- *
- * @return the required wait time, never negative
- */
- final long reserveAndGetWaitLength(int permits, long nowMicros) {
- long momentAvailable = reserveEarliestAvailable(permits, nowMicros);
- return max(momentAvailable - nowMicros, 0);
- }
复制代码 最后调用了 reserveEarliestAvailable- @Override
- final long reserveEarliestAvailable(int requiredPermits, long nowMicros) {
- resync(nowMicros);
- long returnValue = nextFreeTicketMicros;
- double storedPermitsToSpend = min(requiredPermits, this.storedPermits);
- double freshPermits = requiredPermits - storedPermitsToSpend;
- long waitMicros =
- storedPermitsToWaitTime(this.storedPermits, storedPermitsToSpend)
- + (long) (freshPermits * stableIntervalMicros);
- this.nextFreeTicketMicros = LongMath.saturatedAdd(nextFreeTicketMicros, waitMicros);
- this.storedPermits -= storedPermitsToSpend;
- return returnValue;
- }
复制代码 首先通过resync生成令牌以及同步nextFreeTicketMicros时间戳,freshPermits从令牌桶中获取令牌后还须要的令牌数目,通过storedPermitsToWaitTime盘算出获取freshPermits还须要等待的时间,在稳定模式中,这里就是(long) (freshPermits * stableIntervalMicros) ,然后更新nextFreeTicketMicros以及storedPermits,这次获取令牌须要的等待到的时间点,reserveAndGetWaitLength返回须要等待的时间隔断。
从reserveEarliestAvailable可以看出RateLimiter的预消耗原理,以及获取令牌的等待时间时间原理(可以解释示例结果),再获取令牌不敷时,并没有等待到令牌全部生成,而是更新了下次获取令牌时的nextFreeTicketMicros,从而影响的是下次获取令牌的等待时间。
reserve这里返回等待时间后,acquire通过调用stopwatch.sleepMicrosUninterruptibly(microsToWait);进行sleep操作,这里不同于Thread.sleep(), 这个函数的sleep是uninterruptibly的,内部实现:- public static void sleepUninterruptibly(long sleepFor, TimeUnit unit) {
- //sleep 阻塞线程 内部通过Thread.sleep()
- boolean interrupted = false;
- try {
- long remainingNanos = unit.toNanos(sleepFor);
- long end = System.nanoTime() + remainingNanos;
- while (true) {
- try {
- // TimeUnit.sleep() treats negative timeouts just like zero.
- NANOSECONDS.sleep(remainingNanos);
- return;
- } catch (InterruptedException e) {
- interrupted = true;
- remainingNanos = end - System.nanoTime();
- //如果被interrupt可以继续,更新sleep时间,循环继续sleep
- }
- }
- } finally {
- if (interrupted) {
- Thread.currentThread().interrupt();
- //如果被打断过,sleep过后再真正中断线程
- }
- }
- }
复制代码 sleep之后,acquire返回sleep的时间,阻塞结束,获取到令牌。
[code]public boolean tryAcquire(int permits) { return tryAcquire(permits, 0, MICROSECONDS);}public boolean tryAcquire() { return tryAcquire(1, 0, MICROSECONDS);}public boolean tryAcquire(int permits, long timeout, TimeUnit unit) { long timeoutMicros = max(unit.toMicros(timeout), 0); checkPermits(permits); long microsToWait; synchronized (mutex()) { long nowMicros = stopwatch.readMicros(); if (!canAcquire(nowMicros, timeoutMicros)) { return false; } else { microsToWait = reserveAndGetWaitLength(permits, nowMicros); } } stopwatch.sleepMicrosUninterruptibly(microsToWait); return true;}private boolean canAcquire(long nowMicros, long timeoutMicros) { return queryEarliestAvailable(nowMicros) - timeoutMicros |