[C#] 对图像进行垂直翻转(FlipY)的跨平台SIMD硬件加速向量算法,兼谈并行处 ...

打印 上一主题 下一主题

主题 833|帖子 833|积分 2499

目录

将位图进行程度翻转或垂直翻转,这些是图像处理的常用算法。本文先容最简单的垂直翻转,便于后续文章来探讨复杂的程度翻转算法。
本文除了会给出标量算法外,还会给出向量算法。且这些算法是跨平台的,同一份源代码,能在 X86及Arm架构上运行,且均享有SIMD硬件加速。
一、标量算法

1.1 算法实现

垂直翻转的算法原理是很简单的,就是将位图的每一行重新分列——

  • 第0行放到第(height-1)行;
  • 第1行放到第(height-1-1)行;
  • 第2行放到第(height-1-2)行;
用i表示当前行的话,那么垂直翻转的规律是——

  • 第i行放到第(height-1-i)行。
由于此时是整行数据的复制,所以无需关心像素格式。算好每行的字节数后,便可以用字节复制的办法来复制一行数据了。而程度翻转需区分不同的像素格式,比垂直翻转要复杂的多,背面的文章会详细讲解程度翻转。
下面就是标量算法的源代码。
  1. public static unsafe void ScalarDoBatch(byte* pSrc, int strideSrc, int width, int height, byte* pDst, int strideDst) {
  2.     int strideCommon = Math.Min(Math.Abs(strideSrc), Math.Abs(strideDst));
  3.     byte* pRow = pSrc;
  4.     byte* qRow = pDst + (height - 1) * (long)strideDst; // Set to last row.
  5.     for (int i = 0; i < height; i++) {
  6.         byte* p = pRow;
  7.         byte* q = qRow;
  8.         for (int j = 0; j < strideCommon; j++) {
  9.             *q++ = *p++;
  10.         }
  11.         pRow += strideSrc;
  12.         qRow -= strideDst;
  13.     }
  14. }
复制代码
为了支持恣意的像素格式,可以根据  stride(跨距)来计算每一行的字节数。注意stride有可能是负数,故必要用Abs函数来计算绝对值。计算出strideCommon后,内循环便根据它,对当前行的数据进行逐个字节复制处理,直至复制完一整行。
外循环采用了“顺序读取、逆序写入”的策略。具体来说——

  • 读取是从第0行开始的,每次循环后移动到下一行。于是在上面的源代码中,pRow的初值就是 pSrc,每次循环后pRow会 加上 跨距strideSrc。
  • 写入是从最后一行开始的,每次循环后移动到前一行。于是在上面的源代码中,qRow的初值是 pDst + (height - 1) * (long)strideDst(目标位图最后一行的地点),每次循环后qRow会 减去 跨距strideDst。
1.2 基准测试代码

使用 BenchmarkDotNet 进行基准测试。
可以使用上一篇文章的公共函数,写好标量算法的基准测试代码。源代码如下。
  1. [Benchmark(Baseline = true)]
  2. public void Scalar() {
  3.     ScalarDo(_sourceBitmapData, _destinationBitmapData, false);
  4. }
  5. [Benchmark]
  6. public void ScalarParallel() {
  7.     ScalarDo(_sourceBitmapData, _destinationBitmapData, true);
  8. }
  9. public static unsafe void ScalarDo(BitmapData src, BitmapData dst, bool useParallel = false) {
  10.     int width = src.Width;
  11.     int height = src.Height;
  12.     int strideSrc = src.Stride;
  13.     int strideDst = dst.Stride;
  14.     byte* pSrc = (byte*)src.Scan0.ToPointer();
  15.     byte* pDst = (byte*)dst.Scan0.ToPointer();
  16.     bool allowParallel = useParallel && (height > 16) && (Environment.ProcessorCount > 1);
  17.     if (allowParallel) {
  18.         Parallel.For(0, height, i => {
  19.             int start = i;
  20.             int len = 1;
  21.             byte* pSrc2 = pSrc + start * (long)strideSrc;
  22.             byte* pDst2 = pDst + (height - 1 - start) * (long)strideDst;
  23.             ScalarDoBatch(pSrc2, strideSrc, width, len, pDst2, strideDst);
  24.         });
  25.     } else {
  26.         ScalarDoBatch(pSrc, strideSrc, width, height, pDst, strideDst);
  27.     }
  28. }
复制代码
由于现在是图像垂直翻转,于是并行算法需按照同样的规则来计算数据的地点。即上面提到的“顺序读取、逆序写入”。
具体来说——

  • pSrc2 是源数据的指针。由于是顺序读取,故它的计算办法是 pSrc + start * (long)strideSrc.
  • pDst2 是目标数据的指针。由于是逆序写入,故它的计算办法是 pDst + (height - 1 - start) * (long)strideDst. 编写代码时有时可能会漏掉了此中的"- 1",这是一种常见错误,容易导致指针访问非法地点等问题。请大家一定要仔细。
二、向量算法

2.1 算法思路

上面的标量算法是每次复制1个字节,而向量算法可以每次复制1个向量。
若一行数据的字节数,恰恰是向量大小的整数倍的话,那可以直接写个简单循环来处理。非常简单。
但在实际使用中,字节数大多数时候并不是向量大小的整数倍,此时处理起来会复杂一些。
2.1.1 解决非整数倍带来的难点

最保守的办法是——先用向量算法将整数倍的数据给处理完,随后对于末尾的数据,退回为标量算法来处理。
该办法确实有效,但存在以下缺点:

  • 必要编写2种算法——向量的和标量的。会带来更多开发本钱与维护本钱。
  • 末尾的数据是标量处理的,向量硬件加速不起作用。
有没有办法只需写1种算法,且对末尾的数据也能向量化处理呢?
对于“一边读取、一边写入”这种情况,由于读、写的一样平常是不同的数据地区,故有一种办法来实现上面的期望。该办法的关键思路是——先计算好“末尾指针”(向量处理时最后一笔数据的指针地点),然后在循环内每次均检查指针地点,当发现当前指针已经越过“末尾指针”时便逼迫将当前指针设置为“末尾指针”,以完成剩余数据的处理。
使用这种办法,能使末尾的数据也能向量化处理。代价就是——部分末尾的数据会被重复处理。但由于现在是“一边读取、一边写入”,故重复处理并不会带来负面影响。
在向量运算的循环中,增长指针地点判断的分支代码,的确会影响性能。但是由于现在CPU都拥有强大的分支预测能力,对于“末尾指针”判断这种在最后一次循环时才见效的分支,分支预测绝大多数是乐成的,从而掩饰了该分支判断的花费。
实在本系列的前面几篇文章,也是使用这一办法,使末尾的数据也能向量化处理。所以代码中有“The last block is also use vector”的注释。
(另注:在C语言中,C99尺度新增了restrict关键字来标记“指针指向不同的数据地区”情况。restrict用于限定和约束指针,表示这个指针只访问这块内存的唯一方式,也就是告诉编译器,这块内存中的内容的操作都只会通过这个指针,而不会通过其他变量或者指针。C# 目前还没有这样的关键字)
2.2 算法实现

根据上面的思路,编写代码。源代码如下。
  1. public static unsafe void UseVectorsDoBatch(byte* pSrc, int strideSrc, int width, int height, byte* pDst, int strideDst) {
  2.     int strideCommon = Math.Min(Math.Abs(strideSrc), Math.Abs(strideDst));
  3.     int vectorWidth = Vector<byte>.Count;
  4.     int maxX = strideCommon - vectorWidth;
  5.     byte* pRow = pSrc;
  6.     byte* qRow = pDst + (height - 1) * (long)strideDst; // Set to last row.
  7.     for (int i = 0; i < height; i++) {
  8.         Vector<byte>* pLast = (Vector<byte>*)(pRow + maxX);
  9.         Vector<byte>* qLast = (Vector<byte>*)(qRow + maxX);
  10.         Vector<byte>* p = (Vector<byte>*)pRow;
  11.         Vector<byte>* q = (Vector<byte>*)qRow;
  12.         for (; ; ) {
  13.             Vector<byte> data;
  14.             // Load.
  15.             data = *p;
  16.             // Store.
  17.             *q = data;
  18.             // Next.
  19.             if (p >= pLast) break;
  20.             ++p;
  21.             ++q;
  22.             if (p > pLast) p = pLast; // The last block is also use vector.
  23.             if (q > qLast) q = qLast;
  24.         }
  25.         pRow += strideSrc;
  26.         qRow -= strideDst;
  27.     }
  28. }
复制代码
由于只必要利用向量类型来做内存复制,于是可以不消调用 Vector静态类中的方法。甚至连Load、Store 方法也无需使用,因为对向量类型类型进行指针读写操作时,编译器会自动生成“未对齐加载”、“未对齐存储”的指令。
2.3 基准测试代码

随后为该算法编写基准测试代码。
  1. [Benchmark]
  2. public void UseVectors() {
  3.     UseVectorsDo(_sourceBitmapData, _destinationBitmapData, false);
  4. }
  5. [Benchmark]
  6. public void UseVectorsParallel() {
  7.     UseVectorsDo(_sourceBitmapData, _destinationBitmapData, true);
  8. }
  9. public static unsafe void UseVectorsDo(BitmapData src, BitmapData dst, bool useParallel = false) {
  10.     int vectorWidth = Vector<byte>.Count;
  11.     int width = src.Width;
  12.     int height = src.Height;
  13.     if (width <= vectorWidth) {
  14.         ScalarDo(src, dst, useParallel);
  15.         return;
  16.     }
  17.     int strideSrc = src.Stride;
  18.     int strideDst = dst.Stride;
  19.     byte* pSrc = (byte*)src.Scan0.ToPointer();
  20.     byte* pDst = (byte*)dst.Scan0.ToPointer();
  21.     bool allowParallel = useParallel && (height > 16) && (Environment.ProcessorCount > 1);
  22.     if (allowParallel) {
  23.         Parallel.For(0, height, i => {
  24.             int start = i;
  25.             int len = 1;
  26.             byte* pSrc2 = pSrc + start * (long)strideSrc;
  27.             byte* pDst2 = pDst + (height - 1 - start) * (long)strideDst;
  28.             UseVectorsDoBatch(pSrc2, strideSrc, width, len, pDst2, strideDst);
  29.         });
  30.     } else {
  31.         UseVectorsDoBatch(pSrc, strideSrc, width, height, pDst, strideDst);
  32.     }
  33. }
复制代码
也是必要仔细处理并行时的地点计算。
三、使用体系所提供的MemoryCopy方法进行复制

内循环只是做复制一整行数据的操作,恰恰 .NET 体系提供了内存复制的方法“Buffer.MemoryCopy”。于是,利用它也可以完成任务。源代码如下。
  1. public static unsafe void UseCopyDoBatch(byte* pSrc, int strideSrc, int width, int height, byte* pDst, int strideDst) {
  2.     int strideCommon = Math.Min(Math.Abs(strideSrc), Math.Abs(strideDst));
  3.     byte* pRow = pSrc;
  4.     byte* qRow = pDst + (height - 1) * (long)strideDst; // Set to last row.
  5.     for (int i = 0; i < height; i++) {
  6.         Buffer.MemoryCopy(pRow, qRow, strideCommon, strideCommon);
  7.         pRow += strideSrc;
  8.         qRow -= strideDst;
  9.     }
  10. }
复制代码
代码变得更简洁了。
四、对算法进行检查

可按照上一篇的办法,使用SumDifference函数来对各种算法进行检查。
且由于现在是做图像的垂直翻转运算,翻转2次后便能变为原样。于是,现在还可以对 Scalar 算法进行检查。源代码如下。
  1. bool allowCheck = true;
  2. if (allowCheck) {
  3.     try {
  4.         TextWriter writer = Console.Out;
  5.         long totalDifference, countByteDifference;
  6.         int maxDifference;
  7.         double averageDifference;
  8.         long totalByte = Width * Height * 3;
  9.         double percentDifference;
  10.         // Baseline
  11.         ScalarDo(_sourceBitmapData, _expectedBitmapData);
  12.         // Scalar
  13.         ScalarDo(_expectedBitmapData, _destinationBitmapData);
  14.         totalDifference = SumDifference(_sourceBitmapData, _destinationBitmapData, out countByteDifference, out maxDifference);
  15.         averageDifference = (countByteDifference > 0) ? (double)totalDifference / countByteDifference : 0;
  16.         percentDifference = 100.0 * countByteDifference / totalByte;
  17.         writer.WriteLine(string.Format("Difference of Scalar: {0}/{1}={2}, max={3}, percentDifference={4:0.000000}%", totalDifference, countByteDifference, averageDifference, maxDifference, percentDifference));
  18.         // ScalarParallel
  19.         ScalarParallel();
  20.         totalDifference = SumDifference(_expectedBitmapData, _destinationBitmapData, out countByteDifference, out maxDifference);
  21.         averageDifference = (countByteDifference > 0) ? (double)totalDifference / countByteDifference : 0;
  22.         percentDifference = 100.0 * countByteDifference / totalByte;
  23.         writer.WriteLine(string.Format("Difference of ScalarParallel: {0}/{1}={2}, max={3}, percentDifference={4:0.000000}%", totalDifference, countByteDifference, averageDifference, maxDifference, percentDifference));
  24.         // UseVectors
  25.         UseVectors();
  26.         totalDifference = SumDifference(_expectedBitmapData, _destinationBitmapData, out countByteDifference, out maxDifference);
  27.         averageDifference = (countByteDifference > 0) ? (double)totalDifference / countByteDifference : 0;
  28.         percentDifference = 100.0 * countByteDifference / totalByte;
  29.         writer.WriteLine(string.Format("Difference of UseVectors: {0}/{1}={2}, max={3}, percentDifference={4:0.000000}%", totalDifference, countByteDifference, averageDifference, maxDifference, percentDifference));
  30.         // UseVectorsParallel
  31.         UseVectorsParallel();
  32.         totalDifference = SumDifference(_expectedBitmapData, _destinationBitmapData, out countByteDifference, out maxDifference);
  33.         averageDifference = (countByteDifference > 0) ? (double)totalDifference / countByteDifference : 0;
  34.         percentDifference = 100.0 * countByteDifference / totalByte;
  35.         writer.WriteLine(string.Format("Difference of UseVectorsParallel: {0}/{1}={2}, max={3}, percentDifference={4:0.000000}%", totalDifference, countByteDifference, averageDifference, maxDifference, percentDifference));
  36.         // UseCopy
  37.         UseCopy();
  38.         totalDifference = SumDifference(_expectedBitmapData, _destinationBitmapData, out countByteDifference, out maxDifference);
  39.         averageDifference = (countByteDifference > 0) ? (double)totalDifference / countByteDifference : 0;
  40.         percentDifference = 100.0 * countByteDifference / totalByte;
  41.         writer.WriteLine(string.Format("Difference of UseCopy: {0}/{1}={2}, max={3}, percentDifference={4:0.000000}%", totalDifference, countByteDifference, averageDifference, maxDifference, percentDifference));
  42.         // UseCopyParallel
  43.         UseCopyParallel();
  44.         totalDifference = SumDifference(_expectedBitmapData, _destinationBitmapData, out countByteDifference, out maxDifference);
  45.         averageDifference = (countByteDifference > 0) ? (double)totalDifference / countByteDifference : 0;
  46.         percentDifference = 100.0 * countByteDifference / totalByte;
  47.         writer.WriteLine(string.Format("Difference of UseCopyParallel: {0}/{1}={2}, max={3}, percentDifference={4:0.000000}%", totalDifference, countByteDifference, averageDifference, maxDifference, percentDifference));
  48.     } catch (Exception ex) {
  49.         Debug.WriteLine(ex.ToString());
  50.     }
  51. }
复制代码
五、基准测试结果

5.1 X86 架构

X86架构下的基准测试结果如下。
  1. BenchmarkDotNet v0.14.0, Windows 11 (10.0.22631.4541/23H2/2023Update/SunValley3)
  2. AMD Ryzen 7 7840H w/ Radeon 780M Graphics, 1 CPU, 16 logical and 8 physical cores
  3. .NET SDK 8.0.403
  4.   [Host]     : .NET 8.0.10 (8.0.1024.46610), X64 RyuJIT AVX-512F+CD+BW+DQ+VL+VBMI
  5.   DefaultJob : .NET 8.0.10 (8.0.1024.46610), X64 RyuJIT AVX-512F+CD+BW+DQ+VL+VBMI
  6. | Method             | Width | Mean         | Error      | StdDev     | Ratio | RatioSD |
  7. |------------------- |------ |-------------:|-----------:|-----------:|------:|--------:|
  8. | Scalar             | 1024  |  1,077.72 us |  20.704 us |  24.647 us |  1.00 |    0.03 |
  9. | ScalarParallel     | 1024  |    177.58 us |   3.489 us |   3.263 us |  0.16 |    0.00 |
  10. | UseVectors         | 1024  |     79.40 us |   1.549 us |   2.713 us |  0.07 |    0.00 |
  11. | UseVectorsParallel | 1024  |     19.54 us |   0.373 us |   0.547 us |  0.02 |    0.00 |
  12. | UseCopy            | 1024  |     81.88 us |   1.608 us |   2.034 us |  0.08 |    0.00 |
  13. | UseCopyParallel    | 1024  |     18.28 us |   0.357 us |   0.351 us |  0.02 |    0.00 |
  14. |                    |       |              |            |            |       |         |
  15. | Scalar             | 2048  |  4,360.82 us |  52.264 us |  48.888 us |  1.00 |    0.02 |
  16. | ScalarParallel     | 2048  |    717.40 us |  13.745 us |  13.499 us |  0.16 |    0.00 |
  17. | UseVectors         | 2048  |    992.42 us |  19.805 us |  57.457 us |  0.23 |    0.01 |
  18. | UseVectorsParallel | 2048  |    409.04 us |   8.070 us |  19.022 us |  0.09 |    0.00 |
  19. | UseCopy            | 2048  |  1,002.18 us |  19.600 us |  27.476 us |  0.23 |    0.01 |
  20. | UseCopyParallel    | 2048  |    418.30 us |   6.980 us |   5.449 us |  0.10 |    0.00 |
  21. |                    |       |              |            |            |       |         |
  22. | Scalar             | 4096  | 16,913.07 us | 244.574 us | 216.808 us |  1.00 |    0.02 |
  23. | ScalarParallel     | 4096  |  3,844.09 us |  46.626 us |  43.614 us |  0.23 |    0.00 |
  24. | UseVectors         | 4096  |  4,419.30 us |  84.049 us |  78.620 us |  0.26 |    0.01 |
  25. | UseVectorsParallel | 4096  |  4,000.12 us |  44.611 us |  39.546 us |  0.24 |    0.00 |
  26. | UseCopy            | 4096  |  4,608.49 us |  33.594 us |  31.424 us |  0.27 |    0.00 |
  27. | UseCopyParallel    | 4096  |  3,960.86 us |  47.334 us |  44.276 us |  0.23 |    0.00 |
复制代码

  • Scalar: 标量算法。
  • ScalarParallel: 并发的标量算法。
  • UseVectors: 向量算法。
  • UseVectorsParallel: 并发的向量算法。
  • UseCopy: 使用“Buffer.MemoryCopy”的算法。
  • UseCopyParallel: 并发的使用“Buffer.MemoryCopy”的算法。
5.2 Arm 架构

同样的源代码可以在 Arm 架构上运行。基准测试结果如下。
  1. BenchmarkDotNet v0.14.0, macOS Sequoia 15.0.1 (24A348) [Darwin 24.0.0]
  2. Apple M2, 1 CPU, 8 logical and 8 physical cores
  3. .NET SDK 8.0.204
  4.   [Host]     : .NET 8.0.4 (8.0.424.16909), Arm64 RyuJIT AdvSIMD [AttachedDebugger]
  5.   DefaultJob : .NET 8.0.4 (8.0.424.16909), Arm64 RyuJIT AdvSIMD
  6. | Method             | Width | Mean         | Error      | StdDev    | Ratio | RatioSD |
  7. |------------------- |------ |-------------:|-----------:|----------:|------:|--------:|
  8. | Scalar             | 1024  |  1,227.25 us |   0.694 us |  0.649 us |  1.00 |    0.00 |
  9. | ScalarParallel     | 1024  |    261.38 us |   0.739 us |  0.617 us |  0.21 |    0.00 |
  10. | UseVectors         | 1024  |    117.96 us |   0.105 us |  0.098 us |  0.10 |    0.00 |
  11. | UseVectorsParallel | 1024  |     39.46 us |   0.297 us |  0.263 us |  0.03 |    0.00 |
  12. | UseCopy            | 1024  |     92.95 us |   0.081 us |  0.063 us |  0.08 |    0.00 |
  13. | UseCopyParallel    | 1024  |     34.90 us |   0.170 us |  0.159 us |  0.03 |    0.00 |
  14. |                    |       |              |            |           |       |         |
  15. | Scalar             | 2048  |  5,236.47 us |  69.941 us | 62.001 us |  1.00 |    0.02 |
  16. | ScalarParallel     | 2048  |    952.35 us |   3.270 us |  3.059 us |  0.18 |    0.00 |
  17. | UseVectors         | 2048  |    700.91 us |   4.339 us |  4.058 us |  0.13 |    0.00 |
  18. | UseVectorsParallel | 2048  |    254.35 us |   1.183 us |  1.107 us |  0.05 |    0.00 |
  19. | UseCopy            | 2048  |    757.75 us |  14.775 us | 25.485 us |  0.14 |    0.01 |
  20. | UseCopyParallel    | 2048  |    252.87 us |   1.078 us |  1.009 us |  0.05 |    0.00 |
  21. |                    |       |              |            |           |       |         |
  22. | Scalar             | 4096  | 20,257.16 us | 100.815 us | 84.185 us |  1.00 |    0.01 |
  23. | ScalarParallel     | 4096  |  3,728.60 us |  12.672 us | 11.233 us |  0.18 |    0.00 |
  24. | UseVectors         | 4096  |  2,788.68 us |   2.712 us |  2.404 us |  0.14 |    0.00 |
  25. | UseVectorsParallel | 4096  |  1,776.71 us |   1.510 us |  1.412 us |  0.09 |    0.00 |
  26. | UseCopy            | 4096  |  2,448.65 us |   4.232 us |  3.959 us |  0.12 |    0.00 |
  27. | UseCopyParallel    | 4096  |  1,796.17 us |   5.197 us |  4.861 us |  0.09 |    0.00 |
复制代码
5.3 .NET Framework

同样的源代码可以在 .NET Framework 上运行。基准测试结果如下。
  1. BenchmarkDotNet v0.14.0, Windows 11 (10.0.22631.4541/23H2/2023Update/SunValley3)
  2. AMD Ryzen 7 7840H w/ Radeon 780M Graphics, 1 CPU, 16 logical and 8 physical cores
  3.   [Host]     : .NET Framework 4.8.1 (4.8.9282.0), X64 RyuJIT VectorSize=256
  4.   DefaultJob : .NET Framework 4.8.1 (4.8.9282.0), X64 RyuJIT VectorSize=256
  5. | Method             | Width | Mean         | Error      | StdDev     | Ratio | RatioSD | Code Size |
  6. |------------------- |------ |-------------:|-----------:|-----------:|------:|--------:|----------:|
  7. | Scalar             | 1024  |  1,062.91 us |  14.426 us |  12.788 us |  1.00 |    0.02 |   2,891 B |
  8. | ScalarParallel     | 1024  |    183.82 us |   3.609 us |   4.296 us |  0.17 |    0.00 |   2,894 B |
  9. | UseVectors         | 1024  |     71.65 us |   1.420 us |   1.328 us |  0.07 |    0.00 |   3,602 B |
  10. | UseVectorsParallel | 1024  |     24.67 us |   0.471 us |   0.579 us |  0.02 |    0.00 |   3,605 B |
  11. | UseCopy            | 1024  |     82.86 us |   1.653 us |   2.262 us |  0.08 |    0.00 |   3,280 B |
  12. | UseCopyParallel    | 1024  |     24.16 us |   0.481 us |   0.659 us |  0.02 |    0.00 |   3,283 B |
  13. |                    |       |              |            |            |       |         |           |
  14. | Scalar             | 2048  |  4,344.08 us |  68.246 us |  60.498 us |  1.00 |    0.02 |   2,891 B |
  15. | ScalarParallel     | 2048  |    681.94 us |  12.532 us |  11.722 us |  0.16 |    0.00 |   2,894 B |
  16. | UseVectors         | 2048  |    981.58 us |  14.816 us |  13.134 us |  0.23 |    0.00 |   3,602 B |
  17. | UseVectorsParallel | 2048  |    429.28 us |   8.360 us |  16.106 us |  0.10 |    0.00 |   3,605 B |
  18. | UseCopy            | 2048  |    978.79 us |  15.720 us |  13.127 us |  0.23 |    0.00 |   3,280 B |
  19. | UseCopyParallel    | 2048  |    438.06 us |   8.691 us |  15.672 us |  0.10 |    0.00 |   3,283 B |
  20. |                    |       |              |            |            |       |         |           |
  21. | Scalar             | 4096  | 17,306.43 us | 343.417 us | 352.664 us |  1.00 |    0.03 |   2,891 B |
  22. | ScalarParallel     | 4096  |  3,717.65 us |  18.424 us |  17.233 us |  0.21 |    0.00 |   2,894 B |
  23. | UseVectors         | 4096  |  4,451.39 us |  84.848 us |  87.132 us |  0.26 |    0.01 |   3,602 B |
  24. | UseVectorsParallel | 4096  |  3,818.66 us |  24.223 us |  22.658 us |  0.22 |    0.00 |   3,605 B |
  25. | UseCopy            | 4096  |  4,721.90 us |  88.960 us |  83.214 us |  0.27 |    0.01 |   3,280 B |
  26. | UseCopyParallel    | 4096  |  3,820.63 us |  19.312 us |  18.065 us |  0.22 |    0.00 |   3,283 B |
复制代码
六、并行处理收益少少的原因分析

6.1 观察测试结果,产生疑问

观察测试结果,首先能发现这2点情况——

  • UseVectors与UseCopy的测试结果非常接近,且 UseVectorsParallel的测试结果非常接近。这是因为“Buffer.MemoryCopy”内部也使用了向量算法来进行优化。
  • 对于向量算法(UseVectors、UseCopy等)来说,.NET Framework 与 .NET 8.0 的测试结果非常接近。这是因为垂直翻转仅必要做复制操作,这是非常简单的操作。于是早在 .NET Framework 期间,“Buffer.MemoryCopy”已做好了向量化优化。
随后会发现一个奇怪的地方——并行版算法(Parallel)并没有比单线程算法快多少。尤其是对于4096宽度的图片,16个线程并行处理时,仍需花费 90%左右的时间,并行处理的收益少少。
这很奇怪,因为垂直翻转是可以分解为各行去处理的,非常得当并行化。且仅需做简单的内存复制操作,没有复杂的算术运算。16个线程并行处理时,理论上仅必要 1/16 的时间。但测试结果却是 ——仍需花费 90%左右的时间。
再来看看一下Arm架构的测试结果,会发现也存在并行处理收益少少的现象。但是要稍微好一点,比方。

  • UseCopy:2,448.65 us
  • UseCopyParallel:1,796.17 us
1796.17 / 2448.65 ≈ 0.7335。即只需 73.35 % 的时间,但这也比理论值差了不少。
6.2 数据分析

在Width为 4096时,图像高度也是 4096,且使用的是 24位 图像。那么一个图像的总字节数是 4096*4096*3, 即 48MB 左右。
根据UseCopyParallel的结果,来计算一下每秒的处理速率——

  • X86: 48 / 3.96086 ≈ 12.1185 (GB/s)
  • Arm: 48 / 1.79617 ≈ 26.7235 (GB/s)
从上面的数据来看,Arm的吞吐率是相对于 X86的倍数是:26.7235/12.1185 ≈ 2.2052。
6.3 找到原因

我这台Arm计算机,CPU是“Appla M2”。查了资料,发现M2具有“100GB/s同一内存带宽”。
而我的X86电脑,用的是DDR5-5600内存条。DDR每次传输64位数据,故内存带宽为 5600 * 64 / 8 = 44800 (MB/s),即 44.8 GB/s。
我们再来计算一下倍数:100 / 44.8 ≈ 2.2321。
“2.2321”与“2.2052”非常接近。这表示现在遇到的是——内存带宽的瓶颈。
这表示在4096时,我们的算法已经基本占满了内存带宽。此时虽然CPU有10多个线程,理论上很多算力还没发挥出来,但由于内存带宽已占满了,故止步于这个值。
由于是“一读一写”,程序必要2次访问内存——

  • X86: 12.1185*2 = 24.237 (GB/s) (理论上限是 44.8)
  • Arm: 26.7235*2 = 53.447 (GB/s) (理论上限是 100)
可以看出,程序已经达到内存带宽理论上限的60%左右了。即我们的垂直翻转算法,已经是足够优秀了。
6.4 进一步优化的空间

实在程序是还可以进一步优化的,比方使用 地点对齐、预取、非时间性(NonTemporal)写入、循环展开 等手段。但这些手段比较复杂,编码难度大,更会使程序的可读性大为降低。而且这些手段是特定硬件型号敏感的,比方更换了CPU型号后,很多细节得重新调校。
更关键的是,进一步优化的空间已经非常少了,离理论上限只有40%左右差距。就算达到理论上限,性能也仅提高这 40%左右,没法翻倍。仅当硬件型号固定,且有充足来由时,此时才可考虑做进一步的优化处理。
这也给了我们一个提示:在编写向量化算法时,为了克制遇到内存带宽瓶颈,程序应只管少的读写内存。比方使用向量类型进行批量读取,随后只管将数据在向量类型里处理好,最后使用向量类型进行批量写入。
因为在使用向量类型时,是在CPU内的向量寄存器(Register)中处理的。寄存器与CPU同频工作,吞吐率比内存高了几个数量级。寄存器不够用时,一样平常会挪到Cache(高速缓存)上进行周转,Cache的速率也比内存快很多。
附录

    出处:http://www.cnblogs.com/zyl910/    版权声明:自由转载-非商用-非衍生-保持署名 | Creative Commons BY-NC-ND 3.0.
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
回复

使用道具 举报

0 个回复

倒序浏览

快速回复

您需要登录后才可以回帖 登录 or 立即注册

本版积分规则

傲渊山岳

金牌会员
这个人很懒什么都没写!

标签云

快速回复 返回顶部 返回列表