二分查找
- class Solution
- {
- public:
- int search(vector<int>& nums, int target)
- {
- int left = 0, right = nums.size() - 1;
- while(left <= right) // 等于也要进入循环
- {
- int mid = left + (right - left) / 2; // 防止溢出
- if(nums[mid] < target) left = mid + 1;
- else if(nums[mid] > target) right = mid - 1;
- else return mid;
- }
- return -1;
- }
- };
复制代码 总结:
- 能利用二分查找的前提是具有二段性,无论是否有序,紧张的是有二段性
- 判定循环的条件要注意,即是的时候也要进入循环,因为都是未知的,当left和right相等时,具体到一个数也要进循环判定
- 在算mid时要防止溢出
- 本题也是朴素二分查找的模板
- while(left <= right) // 等于也要进入循环
- {
- int mid = left + (right - left) / 2; // 防止溢出
- if(...) left = mid + 1;
- else if(...) right = mid - 1;
- else return ...;
- }
复制代码 在排序数组中查找元素的第一个和末了一个位置
- class Solution
- {
- public:
- vector<int> searchRange(vector<int>& nums, int target)
- {
- if(nums.size() == 0) return {-1, -1};
- int left = 0, right = nums.size() - 1;
- int begin = 0; // 用于记录左端点
- // 找左端点
- while(left < right)
- {
- int mid = left + (right - left) / 2;
- if(nums[mid] < target) left = mid + 1;
- else right = mid;
- }
- if(nums[left] != target) return {-1, -1};
- else begin = left;
- // 找右端点
- left = 0, right = nums.size() - 1; // 重置指针
- while(left < right)
- {
- int mid = left + (right - left + 1) / 2;
- if(nums[mid] <= target) left = mid;
- else right = mid - 1;
- }
- return {begin, right};
- }
- };
复制代码 总结:
- // 找左端点
- while(left < right)
- {
- int mid = left + (right - left) / 2;
- if(...) left = mid + 1;
- else right = mid;
- }
- // 找右端点
- left = 0, right = nums.size() - 1; // 重置指针
- while(left < right)
- {
- int mid = left + (right - left + 1) / 2;
- if(...) left = mid;
- else right = mid - 1;
- }
复制代码 助记:下面-1,上面就加一,判定环境就题论题
x的平方数
- class Solution
- {
- public:
- int mySqrt(int x)
- {
- if(x == 0) return 0;
- int left = 1, rigth = x;
- while(left < rigth)
- {
- long long mid = left + (rigth - left + 1) / 2; // 防止溢出
- if(mid * mid <= x) left = mid;
- else rigth = mid - 1;
- }
- return left;
- }
- };
复制代码 总结:
- 提前处理边界环境
- 本题实际上是找左端点,所以想左端点紧张,写出判定条件
搜索插入位置
- class Solution
- {
- public:
- int searchInsert(vector<int>& nums, int target)
- {
- // 实际上是找右端点
- int left = 0, right = nums.size() - 1;
- while(left < right)
- {
- int mid = left + (right - left) / 2;
- if(nums[mid] < target) left = mid + 1;
- else right = mid;
- }
- if(nums[left] < target) return left + 1;
- return left;
- }
- };
复制代码 总结:
本题实际是找左端点,需要注意的是要单独处理一下末了的特殊环境
山脉数组的峰顶索引
- class Solution
- {
- public:
- int peakIndexInMountainArray(vector<int>& arr)
- {
- int left = 0, right = arr.size() - 1;
- while(left < right)
- {
- int mid = left + (right - left + 1) / 2;
- if(arr[mid] > arr[mid - 1]) left = mid;
- else right = mid - 1;
- }
- return left;
- }
- };
复制代码 总结:
- 数组具有二段性,想到二分查找
- 直接用模板,下面减一上面加一
探求峰值
- class Solution
- {
- public:
- int findPeakElement(vector<int>& nums)
- {
- int left = 0, right = nums.size() - 1;
- while(left < right)
- {
- int mid = left + (right - left) / 2;
- if(nums[mid] > nums[mid + 1]) right = mid; //如果中间值大于下一个值,就去左边一段查找,体会二段性
- else left = mid + 1; // 否则去右边一段查找
- }
- return left;
- }
- };
复制代码 总结:
3. 上减下加,模板很固定,没有出现则不用加
4. 存在二段性就能用二分查找,不用管数组是否有序
探求旋转排序数组的最小值
- class Solution
- {
- public:
- int findMin(vector<int>& nums)
- {
- int left = 0, right = nums.size() - 1;
- while(left < right)
- {
- int mid = left + (right - left) / 2;
- if(nums[mid] < nums[nums.size() - 1]) right = mid;
- else left = mid + 1;
- }
- return nums[left];
- }
- };
复制代码 总结:
5. 本题主要是找见二段行,肯定要绘图,理解两段,找见参照点
点名
- class Solution
- {
- public:
- int takeAttendance(vector<int>& records)
- {
- int left = 0, right = records.size() - 1;
- while(left < right)
- {
- int mid = left + (right - left) / 2;
- if(records[mid] == mid) left = mid + 1;
- else right = mid;
- }
- return records[left] == left ? left + 1 : left; // 三目表达式的运用很方便
- }
- };
复制代码 总结:
- 本题解法许多,如利用哈希表,遍历,位运算(异或),数组求和,二分法
- 二分法关键是找二段性,本题的二段性在值和下标是否一一对应,注意要处理边界环境
完
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |