马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?立即注册
x
要通过代码实现AI图像天生,可以利用深度学习框架如TensorFlow、PyTorch或GANs等技术。下面是一个简单的示例代码,演示如何利用GANs天生手写数字图像:
- import torch
- import torchvision
- import torchvision.transforms as transforms
- import torch.nn as nn
- import torch.optim as optim
- from torchvision.utils import save_image
- import os
- # 数据预处理
- transform = transforms.Compose([
- transforms.ToTensor(),
- transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
- ])
- # 加载MNIST数据集
- trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
- trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
- # 定义生成器和判别器网络
- class Generator(nn.Module):
- def __init__(self):
- super(Generator, self).__init__()
- self.model = nn.Sequential(
- nn.Linear(100, 256),
- nn.ReLU(),
- nn.Linear(256, 784),
- nn.Tanh()
- )
- def forward(self, x):
- return self.model(x)
- class Discriminator(nn.Module):
- def __init__(self):
- super(Discriminator, self).__init__()
- self.model = nn.Sequential(
- nn.Linear(784, 256),
- nn.LeakyReLU(0.2),
- nn.Linear(256, 1),
- nn.Sigmoid()
- )
- def forward(self, x):
- return self.model(x)
- # 初始化网络和优化器
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- gen = Generator().to(device)
- disc = Discriminator().to(device)
- criterion = nn.BCELoss()
- gen_optimizer = optim.Adam(gen.parameters(), lr=0.0002)
- disc_optimizer = optim.Adam(disc.parameters(), lr=0.0002)
- # 训练GANs模型
- num_epochs = 50
- for epoch in range(num_epochs):
- for i, data in enumerate(trainloader, 0):
- real_images, _ = data
- real_images = real_images.view(real_images.size(0), -1).to(device)
- real_labels = torch.ones(real_images.size(0), 1).to(device)
- fake_labels = torch.zeros(real_images.size(0), 1).to(device)
- # 训练判别器
- disc.zero_grad()
- real_outputs = disc(real_images)
- real_loss = criterion(real_outputs, real_labels)
- real_score = real_outputs
- z = torch.randn(real_images.size(0), 100).to(device)
- fake_images = gen(z)
- fake_outputs = disc(fake_images)
- fake_loss = criterion(fake_outputs, fake_labels)
- fake_score = fake_outputs
- d_loss = real_loss + fake_loss
- d_loss.backward()
- disc_optimizer.step()
- # 训练生成器
- gen.zero_grad()
- z = torch.randn(real_images.size(0), 100).to(device)
- fake_images = gen(z)
- outputs = disc(fake_images)
- g_loss = criterion(outputs, real_labels)
- g_loss.backward()
- gen_optimizer.step()
- print('Epoch [%d/%d], Step [%d/%d], d_loss: %.4f, g_loss: %.4f, D(x): %.2f, D(G(z)): %.2f'
- % (epoch, num_epochs, i, len(trainloader), d_loss.item(), g_loss.item(), real_score.mean().item(), fake_score.mean().item()))
- if epoch % 10 == 0:
- if not os.path.exists('images'):
- os.mkdir('images')
- save_image(fake_images.view(fake_images.size(0), 1, 28, 28), 'images/{}.png'.format(epoch))
复制代码 这段代码实现了一个简单的基于GANs的手写数字天生器。在训练过程中,天生器和判别器瓜代训练,以使天生器天生更传神的手写数字图像。留意,这只是一个简单的示例,实际应用中可能须要更复杂的网络结构和更多的训练数据。
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |