09. 算子(索贝尔、沙尔、拉普拉斯算子)

打印 上一主题 下一主题

主题 842|帖子 842|积分 2526

1. 索贝尔(sobel)算子

前面的各种滤波,可以视为低通滤波,后面的各种算子可以视为高通滤波,区别:前面的滤波都是降噪的,算子都是来找图像边界、边缘的。索贝尔算子模拟一阶求导,倒数越大的地方说明变换越剧烈,越有可能是边缘。
Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]])


  • ddepth 一般写-1,如果使用cv的写法的话,就是cv2.CV_64F
  • dx 设置为1,表示求X方向的梯度
  • ksize 是一个数字
  • sobel算子必须分开计算x,y轴,不然的话效果很差
  1. import cv2
  2. import numpy as np
  3. img = cv2.imread('./bg.jpg')
  4. dx = cv2.Sobel(img, cv2.CV_64F, dx=1, dy=0, ksize=3)
  5. # 计算y轴方向的梯度,只有水平方向的边缘
  6. dy = cv2.Sobel(img, cv2.CV_64F, dx=0, dy=1, ksize=3)
  7. # dst = cv2.add(dx, dy)  或以下写法
  8. dst = cv2.addWeightd(dx, 0.5, dy, 0.5, gamma=0)
复制代码
  1. import cv2
  2. import numpy as np
  3. # 卷积
  4. bg = cv2.imread('images/pau3W8ytsv.jpg')
  5. print(bg.shape)
  6. cv2.namedWindow('image', cv2.WINDOW_NORMAL)
  7. cv2.resizeWindow('image', 800, 375)
  8. # dx = cv2.Sobel(bg, -1, dx=1, dy=0, ksize=3)
  9. # dy = cv2.Sobel(bg, -1, dx=0, dy=1, ksize=3)
  10. # 这种写法和上面的写法是一样的,这些算子,就是通过不同的卷积核来实现的
  11. kx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], np.float32)
  12. ky = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], np.float32)
  13. dx = cv2.filter2D(bg, -1, kx)
  14. dy = cv2.filter2D(bg, -1, ky)
  15. print(dx.shape, dx.dtype)
  16. print(dy.shape, dy.dtype)
  17. dst = cv2.add(dx, dy)
  18. cv2.imshow('image', bg)
  19. cv2.imshow('dst', dst)
  20. cv2.waitKey(0)
  21. cv2.destroyAllWindows()
复制代码
2. 沙尔(Scharr)算子

Scharr(src, ddepth, dx, dy[, dst[, scale[, delta[, borderType]]]])

  • 当内核大小为3时,以上Sobel内核可能产生比较明显的误差,毕竟Sobel算子只是求取了倒数的近似值,为解决这一问题,提供了沙尔函数,但该函数仅作用于大小为3的内核。该函数的运算与Sobel函数一样快,但结果却更加精确
  • Scharr算子核Sobel很类似,只不过使用不同的kernel值,放大了像素变换的情况

  • Scharr算子只支持3*3的kernel,所以没有了kernel参数了;
  • Scharr算子只能求x方向或y方向的边缘;
  • Sobel算子的ksize设置为-1就是Scharr算子;
  • Scharr擅长寻找细小的边缘,一般用的较少;
3. 拉普拉斯算子

原理:在一阶导数上,在求导,二阶导数为0,利用这一特性去寻找图像的边缘


  • Laplacian(src, ddpth[, dst[, ksize[, scale[, delta[, borderType]]]]])
  • ksize 是一个数字

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

x
回复

使用道具 举报

0 个回复

倒序浏览

快速回复

您需要登录后才可以回帖 登录 or 立即注册

本版积分规则

大号在练葵花宝典

金牌会员
这个人很懒什么都没写!

标签云

快速回复 返回顶部 返回列表