蒲公英(分块)

打印 上一主题 下一主题

主题 818|帖子 818|积分 2454

Acwing249蒲公英

[洛谷]([Violet]蒲公英 - 洛谷)
[Acwing(数据较强)](249. 蒲公英 - AcWing题库)
前言

“好诗意的题目啊......
那就用很诗意的代码写吧”
思路

首先, 这题是给你 \(l, r\) 的限制目的是强制在线,所以莫队啥的不能用。
由于不满足“区间可加性”(已知\([l, r] \cup[r+1,k]\) 的众数,不能得出 \([l, k]\) 的众数), 所以树状数组/线段树就很难维护。
考虑分块,首先离散。 设块的长度为 \(T\) , 则有 \(n / T\) 块, 然后预处理第 \(i\) 到 \(j\) 块的众数以及数的出现次数, 这段时间复杂度 \(O(NT^2)\)。 之后两段暴力维护, \(O(N/T)\)
总的时间复杂度 \(O(NT^2 + MN/T)\)
所以如果 \(T=\sqrt{N}\) 时间复杂度就为 \(O(N\sqrt{N})\) ( \(N,M\) 同阶)
[code]#include #define for_(i,a,b) for (int i = (a); i < (b); i++)#define rep_(i,a,b) for (int i = (a); i > n >> m;    //    while (t * t * t < n)        t++;    t--; //    t = n / t; //the lenth of a bar    //    rep_(i, 1, n) {        cin >> a;        b = a;    }    sort(b + 1, b + 1 + n);    int len = unique(b + 1, b + 1 + n) - b - 1;    rep_(i, 1, n) {        a = lower_bound(b + 1, b + 1 + len, a) - b;    }    //    for (int i = 1; i  a[j])                    mx = N[a[j]], _S = a[j];            }            // Mid            if (id[L] + 1 < id[R] && N[s[_Pos(id[L] + 1, id[R] - 1)]] == 0) {                int _O = s[_Pos(id[L] + 1, id[R] - 1)];                int Tmp = v[_Pos(id[L] + 1, id[R] - 1)][_O];                if (mx < Tmp || mx == Tmp && _S > _O) {                    mx = Tmp;                    _S = _O;                }            }        }        _X = b[_S];        cout
回复

使用道具 举报

0 个回复

倒序浏览

快速回复

您需要登录后才可以回帖 登录 or 立即注册

本版积分规则

钜形不锈钢水箱

金牌会员
这个人很懒什么都没写!

标签云

快速回复 返回顶部 返回列表