前言
城市生态与人类生活息息相关,快速 、准确 、客 观地了解城市生态状态已成为生态范畴的一个研究重点 。基于遥感技术,提出一个完全基 于遥感技术 ,以天然因子为主的遥感生态指数 (RSEI)来对城市的生态状态举行快速监测与评价 。该指数利用主身分分析技术集成了植被指数 、湿度分量、地表温度和建筑指数等 4个评价指标,它们分别代表了绿度、湿度、热度和干度等4大生态要素。
本文基于GEE平台,实现RSEI算法。
运行结果:
第一步:界说研究区,自行更换本身的研究区
代码如下(示例):
- // 第一步:定义研究区,自行更换自己的研究区
- var roi =
- /* color: #98ff00 */
- /* displayProperties: [
- {
- "type": "rectangle"
- }
- ] */
- ee.Geometry.Polygon(
- [[[120.1210075098537, 35.975189051414006],
- [120.1210075098537, 35.886229778229115],
- [120.25764996590839, 35.886229778229115],
- [120.25764996590839, 35.975189051414006]]], null, false);
-
- Map.centerObject(roi);
复制代码 第二步:加载数据集,界说去云函数
代码如下(示例):
- // 第二步:加载数据集,定义去云函数
- function removeCloud(image){
- var qa = image.select('BQA')
- var cloudMask = qa.bitwiseAnd(1 << 4).eq(0)
- var cloudShadowMask = qa.bitwiseAnd(1 << 8).eq(0)
- var valid = cloudMask.and(cloudShadowMask)
- return image.updateMask(valid)
- }
- // 数据集去云处理
- var L8 = ee.ImageCollection('LANDSAT/LC08/C01/T1_TOA')
- .filterBounds(roi)
- .filterDate('2018-01-01', '2019-12-31')
- .filterMetadata('CLOUD_COVER', 'less_than',50)
- .map(function(image){
- return image.set('year', ee.Image(image).date().get('year'))
- })
- .map(removeCloud)
-
- // 影像合成
- var L8imgList = ee.List([])
- for(var a = 2018; a < 2020; a++){
- var img = L8.filterMetadata('year', 'equals', a).median().clip(roi)
- var L8img = img.set('year', a)
- L8imgList = L8imgList.add(L8img)
- }
复制代码 第三步:主函数,盘算生态指标
代码如下(示例):
- // 第三步:主函数,计算生态指标
- var L8imgCol = ee.ImageCollection(L8imgList)
- .map(function(img){
- return img.clip(roi)
- })
-
- L8imgCol = L8imgCol.map(function(img){
-
- // 湿度函数:Wet
- var Wet = img.expression('B*(0.1509) + G*(0.1973) + R*(0.3279) + NIR*(0.3406) + SWIR1*(-0.7112) + SWIR2*(-0.4572)',{
- 'B': img.select(['B2']),
- 'G': img.select(['B3']),
- 'R': img.select(['B4']),
- 'NIR': img.select(['B5']),
- 'SWIR1': img.select(['B6']),
- 'SWIR2': img.select(['B7'])
- })
- img = img.addBands(Wet.rename('WET'))
-
-
- // 绿度函数:NDVI
- var ndvi = img.normalizedDifference(['B5', 'B4']);
- img = img.addBands(ndvi.rename('NDVI'))
-
-
- // 热度函数:lst 直接采用MODIS产品
- var lst = ee.ImageCollection('MODIS/006/MOD11A1').map(function(img){
- return img.clip(roi)
- })
- .filterDate('2014-01-01', '2019-12-31')
-
- var year = img.get('year')
- lst=lst.filterDate(ee.String(year).cat('-01-01'),ee.String(year).cat('-12-31')).select(['LST_Day_1km', 'LST_Night_1km']);
-
- // reproject主要是为了确保分辨率为1000
- var img_mean=lst.mean().reproject('EPSG:4326',null,1000);
- //print(img_mean.projection().nominalScale())
-
- img_mean = img_mean.expression('((Day + Night) / 2)',{
- 'Day': img_mean.select(['LST_Day_1km']),
- 'Night': img_mean.select(['LST_Night_1km']),
- })
- img = img.addBands(img_mean.rename('LST'))
-
-
- // 干度函数:ndbsi = ( ibi + si ) / 2
- var ibi = img.expression('(2 * SWIR1 / (SWIR1 + NIR) - (NIR / (NIR + RED) + GREEN / (GREEN + SWIR1))) / (2 * SWIR1 / (SWIR1 + NIR) + (NIR / (NIR + RED) + GREEN / (GREEN + SWIR1)))', {
- 'SWIR1': img.select('B6'),
- 'NIR': img.select('B5'),
- 'RED': img.select('B4'),
- 'GREEN': img.select('B3')
- })
- var si = img.expression('((SWIR1 + RED) - (NIR + BLUE)) / ((SWIR1 + RED) + (NIR + BLUE))', {
- 'SWIR1': img.select('B6'),
- 'NIR': img.select('B5'),
- 'RED': img.select('B4'),
- 'BLUE': img.select('B2')
- })
- var ndbsi = (ibi.add(si)).divide(2)
- return img.addBands(ndbsi.rename('NDBSI'))
- })
-
-
- var bandNames = ['NDVI', "NDBSI", "WET", "LST"]
- L8imgCol = L8imgCol.select(bandNames)
-
- //定义归一化函数:归一化
- var img_normalize = function(img){
- var minMax = img.reduceRegion({
- reducer:ee.Reducer.minMax(),
- geometry: roi,
- scale: 1000,
- maxPixels: 10e13,
- })
- var year = img.get('year')
- var normalize = ee.ImageCollection.fromImages(
- img.bandNames().map(function(name){
- name = ee.String(name);
- var band = img.select(name);
- return band.unitScale(ee.Number(minMax.get(name.cat('_min'))), ee.Number(minMax.get(name.cat('_max'))));
-
- })
- ).toBands().rename(img.bandNames()).set('year', year);
- return normalize;
- }
- var imgNorcol = L8imgCol.map(img_normalize);
复制代码 第四步:PCA融合,提取第一主身分
代码如下(示例):
- // 第四步:PCA融合,提取第一主成分
- var pca = function(img){
-
- var bandNames = img.bandNames();
- var region = roi;
- var year = img.get('year')
- // Mean center the data to enable a faster covariance reducer
- // and an SD stretch of the principal components.
- var meanDict = img.reduceRegion({
- reducer: ee.Reducer.mean(),
- geometry: region,
- scale: 1000,
- maxPixels: 10e13
- });
- var means = ee.Image.constant(meanDict.values(bandNames));
- var centered = img.subtract(means).set('year', year);
-
-
- // This helper function returns a list of new band names.
- var getNewBandNames = function(prefix, bandNames){
- var seq = ee.List.sequence(1, 4);
- //var seq = ee.List.sequence(1, bandNames.length());
- return seq.map(function(n){
- return ee.String(prefix).cat(ee.Number(n).int());
- });
- };
-
- // This function accepts mean centered imagery, a scale and
- // a region in which to perform the analysis. It returns the
- // Principal Components (PC) in the region as a new image.
- var getPrincipalComponents = function(centered, scale, region){
- var year = centered.get('year')
- var arrays = centered.toArray();
-
- // Compute the covariance of the bands within the region.
- var covar = arrays.reduceRegion({
- reducer: ee.Reducer.centeredCovariance(),
- geometry: region,
- scale: scale,
- bestEffort:true,
- maxPixels: 10e13
- });
-
- // Get the 'array' covariance result and cast to an array.
- // This represents the band-to-band covariance within the region.
- var covarArray = ee.Array(covar.get('array'));
-
- // Perform an eigen analysis and slice apart the values and vectors.
- var eigens = covarArray.eigen();
-
- // This is a P-length vector of Eigenvalues.
- var eigenValues = eigens.slice(1, 0, 1);
- // This is a PxP matrix with eigenvectors in rows.
- var eigenVectors = eigens.slice(1, 1);
-
- // Convert the array image to 2D arrays for matrix computations.
- var arrayImage = arrays.toArray(1)
- // Left multiply the image array by the matrix of eigenvectors.
- var principalComponents = ee.Image(eigenVectors).matrixMultiply(arrayImage);
-
- // Turn the square roots of the Eigenvalues into a P-band image.
- var sdImage = ee.Image(eigenValues.sqrt())
- .arrayProject([0]).arrayFlatten([getNewBandNames('SD',bandNames)]);
-
- // Turn the PCs into a P-band image, normalized by SD.
- return principalComponents
- // Throw out an an unneeded dimension, [[]] -> [].
- .arrayProject([0])
- // Make the one band array image a multi-band image, [] -> image.
- .arrayFlatten([getNewBandNames('PC', bandNames)])
- // Normalize the PCs by their SDs.
- .divide(sdImage)
- .set('year', year);
- }
-
- // Get the PCs at the specified scale and in the specified region
- img = getPrincipalComponents(centered, 1000, region);
- return img;
- };
-
- var PCA_imgcol = imgNorcol.map(pca)
-
- Map.addLayer(PCA_imgcol.first(), {"bands":["PC1"]}, 'pc1')
复制代码 第五步:利用PC1,盘算RSEI,并归一化
代码如下(示例):
- // 第五步:利用PC1,计算RSEI,并归一化
- var RSEI_imgcol = PCA_imgcol.map(function(img){
- img = img.addBands(ee.Image(1).rename('constant'))
- var rsei = img.expression('constant - pc1' , {
- constant: img.select('constant'),
- pc1: img.select('PC1')
- })
- rsei = img_normalize(rsei)
- return img.addBands(rsei.rename('rsei'))
- })
- print(RSEI_imgcol)
-
- var visParam = {
- palette: '040274, 040281, 0502a3, 0502b8, 0502ce, 0502e6, 0602ff, 235cb1, 307ef3, 269db1, 30c8e2, 32d3ef, 3be285, 3ff38f, 86e26f, 3ae237, b5e22e, d6e21f, fff705, ffd611, ffb613, ff8b13, ff6e08, ff500d, ff0000, de0101, c21301, a71001, 911003'
- };
-
- Map.addLayer(RSEI_imgcol.first().select('rsei'), visParam, 'rsei')
复制代码 完整代码
代码如下(示例):
- // 第一步:定义研究区,自行更换自己的研究区
- var roi =
- /* color: #98ff00 */
- /* displayProperties: [
- {
- "type": "rectangle"
- }
- ] */
- ee.Geometry.Polygon(
- [[[120.1210075098537, 35.975189051414006],
- [120.1210075098537, 35.886229778229115],
- [120.25764996590839, 35.886229778229115],
- [120.25764996590839, 35.975189051414006]]], null, false);
-
- Map.centerObject(roi);
- // 第二步:加载数据集,定义去云函数
- function removeCloud(image){
- var qa = image.select('BQA')
- var cloudMask = qa.bitwiseAnd(1 << 4).eq(0)
- var cloudShadowMask = qa.bitwiseAnd(1 << 8).eq(0)
- var valid = cloudMask.and(cloudShadowMask)
- return image.updateMask(valid)
- }
- // 数据集去云处理
- var L8 = ee.ImageCollection('LANDSAT/LC08/C01/T1_TOA')
- .filterBounds(roi)
- .filterDate('2018-01-01', '2019-12-31')
- .filterMetadata('CLOUD_COVER', 'less_than',50)
- .map(function(image){
- return image.set('year', ee.Image(image).date().get('year'))
- })
- .map(removeCloud)
-
- // 影像合成
- var L8imgList = ee.List([])
- for(var a = 2018; a < 2020; a++){
- var img = L8.filterMetadata('year', 'equals', a).median().clip(roi)
- var L8img = img.set('year', a)
- L8imgList = L8imgList.add(L8img)
- }
- // 第三步:主函数,计算生态指标
- var L8imgCol = ee.ImageCollection(L8imgList)
- .map(function(img){
- return img.clip(roi)
- })
-
- L8imgCol = L8imgCol.map(function(img){
-
- // 湿度函数:Wet
- var Wet = img.expression('B*(0.1509) + G*(0.1973) + R*(0.3279) + NIR*(0.3406) + SWIR1*(-0.7112) + SWIR2*(-0.4572)',{
- 'B': img.select(['B2']),
- 'G': img.select(['B3']),
- 'R': img.select(['B4']),
- 'NIR': img.select(['B5']),
- 'SWIR1': img.select(['B6']),
- 'SWIR2': img.select(['B7'])
- })
- img = img.addBands(Wet.rename('WET'))
-
-
- // 绿度函数:NDVI
- var ndvi = img.normalizedDifference(['B5', 'B4']);
- img = img.addBands(ndvi.rename('NDVI'))
-
-
- // 热度函数:lst 直接采用MODIS产品
- var lst = ee.ImageCollection('MODIS/006/MOD11A1').map(function(img){
- return img.clip(roi)
- })
- .filterDate('2014-01-01', '2019-12-31')
-
- var year = img.get('year')
- lst=lst.filterDate(ee.String(year).cat('-01-01'),ee.String(year).cat('-12-31')).select(['LST_Day_1km', 'LST_Night_1km']);
-
- // reproject主要是为了确保分辨率为1000
- var img_mean=lst.mean().reproject('EPSG:4326',null,1000);
- //print(img_mean.projection().nominalScale())
-
- img_mean = img_mean.expression('((Day + Night) / 2)',{
- 'Day': img_mean.select(['LST_Day_1km']),
- 'Night': img_mean.select(['LST_Night_1km']),
- })
- img = img.addBands(img_mean.rename('LST'))
-
-
- // 干度函数:ndbsi = ( ibi + si ) / 2
- var ibi = img.expression('(2 * SWIR1 / (SWIR1 + NIR) - (NIR / (NIR + RED) + GREEN / (GREEN + SWIR1))) / (2 * SWIR1 / (SWIR1 + NIR) + (NIR / (NIR + RED) + GREEN / (GREEN + SWIR1)))', {
- 'SWIR1': img.select('B6'),
- 'NIR': img.select('B5'),
- 'RED': img.select('B4'),
- 'GREEN': img.select('B3')
- })
- var si = img.expression('((SWIR1 + RED) - (NIR + BLUE)) / ((SWIR1 + RED) + (NIR + BLUE))', {
- 'SWIR1': img.select('B6'),
- 'NIR': img.select('B5'),
- 'RED': img.select('B4'),
- 'BLUE': img.select('B2')
- })
- var ndbsi = (ibi.add(si)).divide(2)
- return img.addBands(ndbsi.rename('NDBSI'))
- })
-
-
- var bandNames = ['NDVI', "NDBSI", "WET", "LST"]
- L8imgCol = L8imgCol.select(bandNames)
-
- //定义归一化函数:归一化
- var img_normalize = function(img){
- var minMax = img.reduceRegion({
- reducer:ee.Reducer.minMax(),
- geometry: roi,
- scale: 1000,
- maxPixels: 10e13,
- })
- var year = img.get('year')
- var normalize = ee.ImageCollection.fromImages(
- img.bandNames().map(function(name){
- name = ee.String(name);
- var band = img.select(name);
- return band.unitScale(ee.Number(minMax.get(name.cat('_min'))), ee.Number(minMax.get(name.cat('_max'))));
-
- })
- ).toBands().rename(img.bandNames()).set('year', year);
- return normalize;
- }
- var imgNorcol = L8imgCol.map(img_normalize);
- // 第四步:PCA融合,提取第一主成分
- var pca = function(img){
-
- var bandNames = img.bandNames();
- var region = roi;
- var year = img.get('year')
- // Mean center the data to enable a faster covariance reducer
- // and an SD stretch of the principal components.
- var meanDict = img.reduceRegion({
- reducer: ee.Reducer.mean(),
- geometry: region,
- scale: 1000,
- maxPixels: 10e13
- });
- var means = ee.Image.constant(meanDict.values(bandNames));
- var centered = img.subtract(means).set('year', year);
-
-
- // This helper function returns a list of new band names.
- var getNewBandNames = function(prefix, bandNames){
- var seq = ee.List.sequence(1, 4);
- //var seq = ee.List.sequence(1, bandNames.length());
- return seq.map(function(n){
- return ee.String(prefix).cat(ee.Number(n).int());
- });
- };
-
- // This function accepts mean centered imagery, a scale and
- // a region in which to perform the analysis. It returns the
- // Principal Components (PC) in the region as a new image.
- var getPrincipalComponents = function(centered, scale, region){
- var year = centered.get('year')
- var arrays = centered.toArray();
-
- // Compute the covariance of the bands within the region.
- var covar = arrays.reduceRegion({
- reducer: ee.Reducer.centeredCovariance(),
- geometry: region,
- scale: scale,
- bestEffort:true,
- maxPixels: 10e13
- });
-
- // Get the 'array' covariance result and cast to an array.
- // This represents the band-to-band covariance within the region.
- var covarArray = ee.Array(covar.get('array'));
-
- // Perform an eigen analysis and slice apart the values and vectors.
- var eigens = covarArray.eigen();
-
- // This is a P-length vector of Eigenvalues.
- var eigenValues = eigens.slice(1, 0, 1);
- // This is a PxP matrix with eigenvectors in rows.
- var eigenVectors = eigens.slice(1, 1);
-
- // Convert the array image to 2D arrays for matrix computations.
- var arrayImage = arrays.toArray(1)
- // Left multiply the image array by the matrix of eigenvectors.
- var principalComponents = ee.Image(eigenVectors).matrixMultiply(arrayImage);
-
- // Turn the square roots of the Eigenvalues into a P-band image.
- var sdImage = ee.Image(eigenValues.sqrt())
- .arrayProject([0]).arrayFlatten([getNewBandNames('SD',bandNames)]);
-
- // Turn the PCs into a P-band image, normalized by SD.
- return principalComponents
- // Throw out an an unneeded dimension, [[]] -> [].
- .arrayProject([0])
- // Make the one band array image a multi-band image, [] -> image.
- .arrayFlatten([getNewBandNames('PC', bandNames)])
- // Normalize the PCs by their SDs.
- .divide(sdImage)
- .set('year', year);
- }
-
- // Get the PCs at the specified scale and in the specified region
- img = getPrincipalComponents(centered, 1000, region);
- return img;
- };
-
- var PCA_imgcol = imgNorcol.map(pca)
-
- Map.addLayer(PCA_imgcol.first(), {"bands":["PC1"]}, 'pc1')
- // 第五步:利用PC1,计算RSEI,并归一化
- var RSEI_imgcol = PCA_imgcol.map(function(img){
- img = img.addBands(ee.Image(1).rename('constant'))
- var rsei = img.expression('constant - pc1' , {
- constant: img.select('constant'),
- pc1: img.select('PC1')
- })
- rsei = img_normalize(rsei)
- return img.addBands(rsei.rename('rsei'))
- })
- print(RSEI_imgcol)
-
- var visParam = {
- palette: '040274, 040281, 0502a3, 0502b8, 0502ce, 0502e6, 0602ff, 235cb1, 307ef3, 269db1, 30c8e2, 32d3ef, 3be285, 3ff38f, 86e26f, 3ae237, b5e22e, d6e21f, fff705, ffd611, ffb613, ff8b13, ff6e08, ff500d, ff0000, de0101, c21301, a71001, 911003'
- };
-
- Map.addLayer(RSEI_imgcol.first().select('rsei'), visParam, 'rsei')
复制代码 总结
提示:用完代码记得反馈。
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |