蒋鸿翔:网易数据基础平台建设

打印 上一主题 下一主题

主题 766|帖子 766|积分 2300


导读: 首先简单介绍一下网易杭州研究院情况简介,如下图所示:

我们公司主要从事平台技术开发和建设方面,工作的重点方向主要在解决用户在数据治理中的各种问题,让用户能更高效地管理自己的数据,进而产生更大的价值,比如如何整合现有功能流程,节省用户使用成本;增加新平台不断调研,丰富平台功能;新平台功能、性能改造,从而满足用户大规模使用需求;根据业务实际需求,输出相应的解决方案等。今天分享的内容主要是从数据库内核到大数据平台底层技术开发,分享网易数据科学中心多年的大数据建设经验。
--
01 数据库技术


数据技术主要有InnoSQL和NTSDB,NTSDB是最近研发的新产品,预计明年将向外推荐此产品,InnoSQL属于MySQL分支方面的研究大概从2011年开始的,InnoSQL的主要目标是提供更好的性能以及高可用性,同时便于DBA的运维以及监控管理。

RocksDB是以树的形式组织数据的产品,MySQL有一个MyRocks产品,我们内部将其集成到InnoSQL分支上。这样做的原因是公司有很多业务,很多都是利用缓存保持其延迟,其规模会越来越大,这样就导致缓存、内存成本很高;其业务对延迟要求不是特别高,但要保持延迟稳定(小于50毫秒)。
RocksDB能够很好地将缓存控制的很好,随着缓存越来越大,有的公司会将其放到HBase上,但是其延迟有时波动会很大,如小米HBase很强,但还是做了一个基于K-V模式的缓存处理,主要解决延迟波动问题。我们主要是基于开源产品来解决,如将RocksDB集成起来解决公司业务对延迟稳定的一些需求。
InnoRocks由于是基于LSM,因此对写入支持非常好,后续有内部测试数据可以展示。还有就是LSM压缩比很高,网易一种是替换缓存,一种是普通数据库存储,目前还是用InnoDB存储,如果用InnoRocks存储会节省很多存储空间;还有一个就是结合DB做扩展,将其集成到公司内部。

上图是写入对比,是一个普通的写入测试,其主介质是递增型的,对于两个都是一个顺序读写过程;如果要完全对比还要测试RFID写入测试,这样能够明显反应RocksDB和InnoDB的差距。图中RocksDB写入性能比InnoDB要好,读取性能InnoDB性能比RocksDB。300GB原始数据,分别导入到Inno DB(未压缩)和Inno Rocks后的存储容量对比,Inno DB为315GB左右,Inno Rocks为50 ~ 60GB,存储容量是Inno DB的20%到30%。
InnoRock一般场景是替换InnoDB写入,因为其写入性能、压缩性能更好、成本也更低。另一方面能够解决InnoDB延迟不稳定,替换大量的缓存应用,只要其对相应时间没有特殊要求。

  • (1)大量数据写入场景,比如日志、订单等;
  • (2)需要高压缩以便存储更多的数据,Inno DB --> Inno Rocks;
  • (3)对写入延迟波动比较敏感,HBase --> Inno Rocks;
  • (4)相对较低的延迟要求(10 ~ 50ms)下替换缓存场景(延迟 Inno Rocks。

InnoSQL是MySQL一个分支,同时还做了一个时序数据库。其不依赖第三方存储,重新做了一套。其架构也是列式存储,支持倒排索引等不同索引组织形式。对大型数据公司时序数据库集中在访问时通过什么去访问,我们提供SQL层给外部应用去访问,应用简单。
NTSDB特点有聚合运算相关算法,时序数据库相对于关系型数据库没有特别复杂的查询,最常见的使用类型是宽表使用,在此基础上做一些聚合算法、插值查询。


NTSDB应用场景很多,很多应用都可以基于时序数据库来做,最常见的就是监控系统,有一些外部应用也会对接监控系统。外部应用中,现在RIT比较火,时序是其中比较重要的一环,很多设备目前都需要联网,数据的产生都是以时间的形式产生,有的通过规则引擎处理存储在时序数据库中。
--
02 大数据技术


我们大数据平台整合了一些开源社区的一些组件,内部进行一些产品化的改造和bug修复。最顶层是大数据接入层,作为大数据平台,业务平台很多数据来源于数据库,也有很大一部分来源于日志。通过NDC做全量数据导入,如有些数据在Oracle中,通过NDC导入,后续可以通过数据变更来进行同步,还有一个通过dataStream将日志数据录入大数据平台。数据存储层大都差不多,都用HDFS 存储,搭载一些HBase分布式存储;数据计算大都是离线计算平台,内存计算是基于Spark;数据加工和一般大数据平台都差不多,我们加入了自助分析、任务运维,后续会详细介绍。接下来介绍自助分析里面应用的一个插件Impala,以及分布式存储系统中的Kudu平台。


应用Impala目标是解决大数据量下的ad-hoc查询问题,ad-hoc是介于OITP和OIAP中间的一层,OITP是响应层很快,毫秒级;OIAP查询有时会耗时很久。ad-hoc定位与1分钟到几分钟,现在很多业务需要ad-hoc提供,如公司报表,有时需要实时计算,响应在5秒-1分钟延迟。
Impala架构特点就是每一个节点都是无状态节点,节点查询地位一样,查询无论发送到哪一个节点都可以生成查询计划、产生结果。查询打到哪一个节点就能生成执行计划,将对应的节点分配给对应的处理节点,将所有节点返回后做一个规则,然后做一个返回。基本所有的MPP架构都是类似。

选择Impala而不选择其他工具的原因:首先它有元数据缓存,好处是节点缓存元数据做查询时不用再去获取元数据,缺点就是元数据爆炸问题;再者就是Impala兼容Hive,元数据可以和Hive共享;同时还支持很多算子下推。Impala最好使用方式是通过Impala自己insert然后通过其自己去查,实际过程是通过Hive和Spark写入大数据平台,通过Impala来做查询。这种方式有些限制就是写入时Impala无法感知写入,还有在Hive更改元数据,Impala能读取数据但是无法动态感知,为了解决这个问题官方提供手动刷新操作。

Impala缺陷就是所有节点都是MPP结构,没有统一的Master入口,负载均衡不易控制。底层数据权限粒度控制不够,HDFS转HBase是以同级HBase身份访问,Impala访问底层需要以Impala身份访问。这种问题尤其在同一平台下分有很多业务时,用Hive写数据时,访问权限就会有问题,因此我们在内部权限访问方面做了改造。每个coordinator节点都能接收SQL,没有集中统一的SQL管理,如果挂掉所有历史信息都无法追踪。

我们基于Impala问题做了相应整改:

  • (1)首先是基于Zookeeper的Load Balance机制;
  • (2)管理服务解决SQL无法持续化问题,管理服务器保存最近几天的SQL和执行过程,便于后续SQL审计,超时SQL自动kill;
  • (3)管理权限将底层权限分得很细;
  • (4)元数据缓存问题,增加与Hive的元数据同步功能,Hive记录元数据变更,Impala拉取变更自动同步,这种只能缓解元数据爆炸问题。
遗留的问题就是元数据容量,过滤智能解决部分问题;还有一个就是底层IO问题,因为离线写入和Impala查询是同一份数据,如果写入吃掉很多IO,查询就会出现问题。离线本身对IO敏感很低。除此之外我们还引入了ES技术,公司ES业务也有很多,碰到问题就是ES在SQL支持方面不是很好,目前我们的Impala支持一些ES的查询。
Kudu用于解决离线数据实时性问题,HDFS存K-v数据,类似IOAP访问,Hive是来做离线分析的,Kudu就是想同时做这两件事情的背景下产生的。行为数据是在离线平台上,用户数据是实时在数据库中,如快递行业经常需要追踪快递的位置,离线平台就要经常做自助分析,需要将数据库中的状态实时同步到离线平台上去。目前做法就是数据库批量写入Hive表中,同时你的批量不能太小,容易产生很多小文件,这样可能造成数据实时性很差,一般是半小时到一小时的延迟。大部分业务可接受,但是对于对延迟敏感的业务可能不支持,Kudu就是解决半小时到一小时的数据实时性。


Kudu是一个存储平台,不依赖于任何第三方存储系统,目前更类似于数据库形式,Impala既能访问Hive中的数据,也能访问Kudu中的数据,这样的好处是两边的数据可以进行联合查询。Kudu现在也支持Spark,也可以直接通过API访问。上图是Kudu的结构划分到内部数据组织形式,Kudu支持Tablelet操作而HDFS不支持。前面的结构和HBase挺像,不同的是数据组织形式是不一样的,Kudu可以做一些分析性的业务查询。最主要的区别是数据存储格式不一样,Kudu是Column Family级别列存,先整个切一块然后再做列组形式。

Kudu跟HDFS相比性能还是有差距,Kudu由于需要支持update,在内存 & 磁盘上数据的存储采用Base + delta形式,Base记录基本的数据,delta记录修改的数据,所以数据读取时需要同时读取Base + delta两部分数据。
Kudu优化主要是:

  • (1)支持Kudu tablet的split;
  • (2)支持指定列的TTL功能;
  • (3)支持Kudu数据Runtime Filter功能;
  • (4)支持Kudu创建Bitmap索引。
我们主要是按照HBase进行优化,在有需要情况下优化,HBase有而Kudu没有就对照的做。


Impala里面对HDFS有一个Runtime Filter功能,Kudu表上没有,我们先分析下它到底有什么作用,是不是有性能上的改进,将其移植过来。Runtime Filter主要是用在大表和小表做关联时使用,在关联时做成hash表,绑定到所有大表节点上去,在大表扫数据时利用hash表做过滤,因此在底层扫描就已经过滤掉很多数据,就可以省略很多不必要的计算。上图是Kudu的是否有Runtime Filter的结果对比,可以看出减少了很多计算量,原先需要几秒,现在只需秒级显示结果。结果对比有了很大的改进,虽然还是有差距,目前也在改进,目标是和Impala相差不是很大。

还有一个场景就是在Kudu上做Bitmap索引,主要面向的业务是宽表的多维过滤,有些表的查询会依据后面的实例去确定查询,这种用Bitmap做比一个个找出来查询性能要优越很多。另一个好处就是group by,因为其要将相同类型合并到一列,主要是做hash或者排序,这种查询会很快,而不用做全局排序。Bitmap应用的限制就是数据离散性不能太好,dinstct count的值不能太多,向数据库中主键不适合做Bitmap,像省份等值比较少的适合做Bitmap。

应用后用TPC-H中的一张表测试,Bitmap主要应用多维场景过滤,从一列过滤、两列过滤、到五维过滤整个表现很好,性能提升有十几倍提升。如果数据从数据库导入大数据平台离线分析其实时性比较慢,主要局限小文件以及导入批量大小问题,利用Kudu就不用考虑,可以直接通过Kudu实现数据变更导入大数据支持实时联查。而且可以实时同步Oracle和MySQL数据到Kudu中,进行联查就可以了,如果没有就需要同步查询可能需要半小时才能返回结果。
今天的分享就到这里,谢谢大家。
本文首发于微信公众号“DataFunTalk”。

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

x
回复

使用道具 举报

0 个回复

倒序浏览

快速回复

您需要登录后才可以回帖 登录 or 立即注册

本版积分规则

南七星之家

金牌会员
这个人很懒什么都没写!

标签云

快速回复 返回顶部 返回列表