论坛
潜水/灌水快乐,沉淀知识,认识更多同行。
ToB圈子
加入IT圈,遇到更多同好之人。
朋友圈
看朋友圈动态,了解ToB世界。
ToB门户
了解全球最新的ToB事件
博客
Blog
排行榜
Ranklist
文库
业界最专业的IT文库,上传资料也可以赚钱
下载
分享
Share
导读
Guide
相册
Album
记录
Doing
应用中心
搜索
本版
文章
帖子
ToB圈子
用户
免费入驻
产品入驻
解决方案入驻
公司入驻
案例入驻
登录
·
注册
账号登录
立即注册
找回密码
用户名
Email
自动登录
找回密码
密码
登录
立即注册
首页
找靠谱产品
找解决方案
找靠谱公司
找案例
找对的人
专家智库
悬赏任务
圈子
SAAS
qidao123.com技术社区-IT企服评测·应用市场
»
论坛
›
人工智能
›
人工智能
›
AIGC实战——生成对抗网络(Generative Adversarial Netw ...
AIGC实战——生成对抗网络(Generative Adversarial Network, GAN) ...
南飓风
论坛元老
|
2024-8-17 02:45:10
|
显示全部楼层
|
阅读模式
楼主
主题
1907
|
帖子
1907
|
积分
5721
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要
登录
才可以下载或查看,没有账号?
立即注册
x
0. 前言
生成对抗网络 (Generative Adversarial Network, GAN) 是由 Ian Goodfellow 等人在 2014 年提出的一种强大的深度学习模子,可以用于生成新数据样本,比如图像、音频、文本等。GAN 包含两个神经网络:生成器和判别器。生成器根据输入的噪声信号生成一些伪造的数据样本,而判别器则负责判定该数据样本是真实的照旧伪造的。在本节中,首先阐述生成对抗网络的理论底子,然后使用 Keras 构建生成对抗网络模子。
1. 生成对抗网络
1.1 生成对抗网络核心头脑
生成对抗网络 (Generative Adversarial Network,GAN) 可以通过类比为一个伪造专家与一个检测专家之间的博弈。生成器 (generator) 是伪造专家,目标是制造出传神的假样本,以尽可能地欺骗检测专家。而鉴别器 (discriminator) 则是检测专家,旨在区分真实样本和生成器产生的假样本,并尽可能正确地辨认它们。
在开始时,生成器只能制造出不完善的假样本,而鉴别器擅长辨别真伪而且正确率相对较高。然而,随着训练的进行,生成器变得更加纯熟,并积极提高自己的武艺,从而创造传神的样本。同时,鉴别器也在不断学习和调整自己的判别能力,以保持对假样本的敏感度。
通过反复的博弈和训练,生成器和鉴别器渐渐到达一种平衡状态。生成器学会了创造足以迷惑鉴别器的传神作品
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
回复
使用道具
举报
0 个回复
倒序浏览
返回列表
快速回复
高级模式
B
Color
Image
Link
Quote
Code
Smilies
您需要登录后才可以回帖
登录
or
立即注册
本版积分规则
发表回复
回帖并转播
回帖后跳转到最后一页
发新帖
回复
南飓风
论坛元老
这个人很懒什么都没写!
楼主热帖
零信任介绍
容斥原理
开源SPL助力JAVA处理公共数据文件(txt ...
使用 Helm 安装 MQTT 服务器-EMQX ...
数理逻辑第1-3章
Ubuntu如何安装Mysql+启用远程连接[完 ...
dotnet 修复在 Linux 上使用 SkiaSharp ...
DOS窗口命令和单表简单查询
Java笔记(13) 简单的Lambda表达式 ...
.gitignore文件配置以及gitee提交报Pus ...
标签云
渠道
国产数据库
集成商
AI
运维
CIO
存储
服务器
快速回复
返回顶部
返回列表