论坛
潜水/灌水快乐,沉淀知识,认识更多同行。
ToB圈子
加入IT圈,遇到更多同好之人。
朋友圈
看朋友圈动态,了解ToB世界。
ToB门户
了解全球最新的ToB事件
博客
Blog
排行榜
Ranklist
文库
业界最专业的IT文库,上传资料也可以赚钱
下载
分享
Share
导读
Guide
相册
Album
记录
Doing
搜索
本版
文章
帖子
ToB圈子
用户
免费入驻
产品入驻
解决方案入驻
公司入驻
案例入驻
登录
·
注册
只需一步,快速开始
账号登录
立即注册
找回密码
用户名
Email
自动登录
找回密码
密码
登录
立即注册
首页
找靠谱产品
找解决方案
找靠谱公司
找案例
找对的人
专家智库
悬赏任务
圈子
SAAS
ToB企服应用市场:ToB评测及商务社交产业平台
»
论坛
›
大数据
›
数据仓库与分析
›
数据架构新篇章:存算一体与存算分离的协同演进 ...
数据架构新篇章:存算一体与存算分离的协同演进
写过一篇
金牌会员
|
2024-8-17 18:30:22
|
显示全部楼层
|
阅读模式
楼主
主题
855
|
帖子
855
|
积分
2565
前言
降本增效大环境下,存算分离架构如火如荼,Why?
起首,先来简单相识两个架构的侧重点:
存算一体是性能敏感型的架构
存算分离是成本敏感型的架构
而大家所谈论的降本增效,是降本在前增效在后,先降本再考虑增效,故而降本才是真实的着重点!
所以,这也是为什么,当下存算分离架构被追捧的主要原因。
以上是从存算一体和存算分离架构效果效应而言,接下来我们从架构本身来聊聊它们之间的故事。
被误解的存算分离
经常会有小伙伴,会发出这么些疑问:
“Hadoop是不是本身就带有存算分离架构的属性,HDFS存储和YARN盘算管理分别摆设在差别的节点不就是存算分离?”
“湖仓一体,湖作为有界的流批一体存储,仓举行查询加快盘算,这是不是也可以理解为存算分离?”
…
从常规的摆设拓扑图而言,Hadoop的HDFS和Yarn分开摆设、湖仓存算分工,字面上是存和算分离了,但从存算一体的概念和存算分离的界说而言,并不是!
存算一体的概念
存算一体的过往
存算一体的概念形成,最早可以追溯到上个世纪70年代。随着云盘算和人工智能应用的发展,盘算中央面对着前所未有的数据洪流,数据搬运的速率慢和搬运过程中的高能耗等题目成为盘算的主要瓶颈点。
在传统的冯·诺依曼盘算架构中,数据需要频仍在存储单元和盘算单元之间传输,这不仅导致了巨大的能耗,还造成了盘算效率的低落。存算一体技能通过直接利用存储器举行数据处置处罚或盘算,将数据存储与盘算融合在同一个芯片的同一区域,从而彻底消除了冯·诺依曼架构的瓶颈。特别是在深度学习神经网络这种大数据量和大规模并行的应用场景中,存算一体技能显得尤为适用。
所以,存算一体也通指为"compute-in-memory"或"compute-near-memory",平常而言就是让存储和盘算更贴贴。它主要上风在于可以或许打破存储墙,消除不必要的数据搬移耽误和功耗,并利用存储单元提升算力,从而成百上千倍地提高盘算效率。在特定领域可以提供更大的算力(超过1000TOPS)和更高的能效(超过10-100TOPS/W),将能耗低落至1/10至1/100;使用存储单元参与逻辑盘算,从而提升算力,相称于在面积稳定的情况下大规模增长盘算焦点数。
存算一体的演进
回到世纪之初大数据兴起之时,用户数据快速膨胀,对海量数据的分析需求越来越显着,各行各业都在搭建本身的数据堆栈和商业智能体系。但传统的Unix主机和高端存储价格高昂,搭建一个用于决议支持的数据堆栈体系需要巨额投资。别的,可能泯灭巨资搭建的体系在举行海量数据统计汇总时速率非常慢。
经过分析发现,题目的根本在于IO瓶颈。因为盘算单元处置处罚数据,但并不存储数据,所有的数据都需要从存储中取出。而存储在取数据时是一个数据块一个数据块地取,无法判定这个块中哪些数据是盘算单元需要的。在传统的行存储场景中,一个决议查询可能只需要几个字段,但必须把所有数据都传输到盘算单元举行处置处罚和判定,之后再扬弃不需要的数据。这不仅浪费了大量IO,还因为盘算单元内存不敷,在大表join关联时会产生大量临时数据,这些数据需要在存储中临时存放,造成了进一步的资源浪费。
为了应对这些挑战,天然催生出新的架构。广泛的原理是在OLTP体系中每次利用都是小数据量,适合移动数据到盘算单元;而在OLAP体系中每次都会涉及大量数据处置处罚,适合移动盘算到数据单元。这意味着海量数据起首在本地举行初步加工,减少数据量后再参与后续盘算,从而节流IO和算力,提高性能。在这个阶段,技能的焦点关注点在于减少网络间传输的IO。通过列式存储来支持分析体系中按列统计的习惯,每次查询只需要取需要的列,从而减少无谓的IO。同时,利用各种索引技能加快数据定位和存取的效率,闪存技能的高速发展也进一步提升了体系的性能。
总而言之,存算一体的概念焦点是为相识决传统盘算架构中的数据搬运瓶颈和存储单元参与逻辑盘算低效的题目。通过将存储和盘算功能集成在同一芯片上,大幅减少数据在存储和盘算单元之间的传输需求,显著低落了能耗并提升了盘算效率。在大数据分析和需求不断增长的背景下,基于这种概念,通过减少网络传输和IO利用,优化存储和盘算的协同工作,也为大数据架构提供了一种高效的解决方案。
存算分离的界说
存算分离的过往
提到存算分离,不得不提一位传奇人物,即Oracle的创始人之一Larry Ellison。自1977年创建SDL并在1982年更名为Oracle以来,Oracle敏捷利用小型机的快速发展占据了商用数据库市场的主导职位。直至本日,Oracle仍然在DB-Engine排行榜上名列前茅,数十年未被动摇。
存算分离的概念最早在Unix体系的普及过程中渐渐成型。当时,市场上可以或许提供Unix主机的企业数目不断增长,除了IBM,尚有HP、Compaq和富士通和Sun等公司。这些Unix主机广泛接纳了连接独立存储服务器的方式,第一次实现了存储和盘算的分离。
在这次存算分离的实现过程中,几项关键技能起到了重要作用,包括成熟的网络组网技能和存储网络技能,当然尚有Oracle自身的杀手级技能——
缓存融合
。通过这些技能,用户可以获得N多利益:
增强体系的伸缩性:用户可以独立增长数据库服务器来提升处置处罚能力,或者增长存储服务器来扩大数据库容量。
增强体系的容错性:在存算分离架构下,通过冗余设置可以防止任何一个环节出现单点故障,增强了数据库体系的连续服务能力。
内存融合技能则是允许两个盘算节点共享对方节点的内存数据,从而减少磁盘读取带来的IO负担。缓存融合技能允许差别RAC节点通过高速内网共享各节点数据库实例内部缓存的数据块,直接在节点间通报而无需等待写入磁盘,从而实现高效的协同工作。为了低落远端内存访问时的主机斲丧,Oracle还使用了基于RDMA技能的RDS协议,可以直接绕开CPU,实现远程内存的直接读取,进一步提升访问效率。
存算分离的演进
随着公有云的快速发展,按需付费的理念逐步深入人心,用户对大规模数据分析的需求也要求可以或许按需供给,而传统MPP存算一体的紧耦合架构已经无法满意这种需求。与此同时,网络技能和存储技能的飞速发展,天然而然地催生了新一代的云原生数据库架构——存算分离架构。
以业界最闻名的Snowflake公司为例,其创始人Benoit Dageville和Thierry Cruanes曾在Oracle从事数据工程工作多年,后来他们决定在云上创建数仓,联合另一位创始人Marcin Żukowski共同创立了Snowflake。为了更好地利用云上的资源,他们起首将存储和盘算再次分离。数据被大量分区地存储在共享的对象存储中,并以列式存储方式生存。中间的盘算层通过无状态的虚拟数据堆栈来动态拉起和烧毁,实现用户差别工作负载的机动调理和计费。
Snowflake的乐成进一步分析了存算分离的界说和上风。在存算分离架构中,数据存储和盘算资源被解耦,从而实现了更高的资源利用率和机动性。数据被存储在共享存储中,而盘算任务可以根据需求动态地启动和烧毁。这种方法不仅提高了体系的弹性,还减少了资源的浪费。
结合Snowflake关于存算分离的论文来分析关于存算分离的界说:
可以简单总结为两点:
弹性:需要有足够的弹性支持,分为存储和盘算两个维度:
存储:基于对象存储或者公用存储池具备可机动弹性,可以使用更低成本的对象存储,HDFS 等低成本存储。
盘算:弹性的盘算资源,并且盘算节点是无状态的。比方差别时间点使用差别规模的盘算资源服务业务请求,按需使用盘算资源,节省成本。
缓存:主要指的是数据和元数据缓存:
数据缓存:只要是跨节点或跨网络环境举行数据通信交换盘算之类的利用,肯定需要缓存加快,通常是基于 LRU 策略和 TTL 策略去实现。
元数据缓存:主要是为了提升团体服务的易用可靠性,好比解决对象存储中常见的List(列出对象利用;当对象存储中的文件数目非常多时,执行List利用可能会变得迟钝,因为需要遍历大量的对象以生成列表)和Rename(重命名对象,重利用)题目。
那么,结合以上存储一体的概念和存算分离的界说而言,Hadoop和湖仓架构并不算严格意义上的存算分离,只是存算一体紧耦合的架构。
存算一体和分离示例
以Apache Doris的存算一体和存算分离架构为例:
Doris 的团体架构由两类进程组成:Frontend (FE) 和 Backend (BE)。此中 FE 主要负责用户请求的接入、查询解析规划、元数据的管理、节点管理相关工作;BE 主要负责数据存储、查询操持的执行。
存算一体:在存算一体架构下,BE 节点上存储与盘算精密耦合,数据主要存储在 BE 节点上,多 BE 节点接纳 MPP 分布式盘算架构。
存算一体的优点
摆设浅易:Apache Doris 不需要依靠类似外部共享文件体系或者对象存储,仅依靠物理服务器摆设 FE 和 BE 两个进程即可完成集群的搭建,可以从一个节点扩展到数百个节点,同时也增强了体系的稳定性。
性能优秀:Apache Doris 执行盘算时,盘算节点可直接访问本地存储数据,充实利用机器的 IO、减少不必要的网络开销、获得更极致的查询性能。
存算一体的适用场景
简单使用/快速试用 Doris,或在开辟和测试环境中使用。
不具备可靠的共享存储,如 HDFS、Ceph、对象存储等。
业务线独立维护 Apache Doris,无专职 DBA 来维护 Doris 集群。
不需极致弹性扩缩容,不需 K8s 容器化,不需运行在公有云或者私有云上。
存算分离:BE 节点不再存储主数据,而是将共享存储层作为统一的数据主存储空间。同时,为了应对底层对象存储体系性能不佳和网络传输带来的性能降落,Doris 引入盘算节点本地高速缓存。主要角色如下:
FE: Doris FE 节点。
BE: 无状态化的 Doris BE 节点,BE 上会 Cache 一部门 Tablet 元数据和数据以提高查询性能。
Cluster: 无状态的盘算资源 (BE 节点) 集合,多个 Cluster 共享一份数据,Cluster 可以随时弹性加减节点。
Meta-service: Doris 存算分离元数据服务,主要负责处置处罚导入事件,tablet meta, rowset meta 以及集群资源管理。这是一个可以横向扩展的无状态服务。
Foundationdb: 现实存储元数据的分布式事件 kv。
存算分离的优点
弹性的盘算资源:差别时间点使用差别规模的盘算资源服务业务请求,按需使用盘算资源,节省成本。
负载 (完全) 隔离:差别业务之间可在共享数据的底子上隔离盘算资源,兼具稳定性和高效率。
低存储成本:可以使用更低成本的对象存储,HDFS 等低成本存储。
存算分离的适用场景
已使用公有云服务。
具备可靠的共享存储体系,好比 HDFS、Ceph、对象存储等。
需要极致的弹性扩缩容,需要 K8S 容器化,需要运行在私有云上。
有专职团队维护整个公司的数据堆栈平台。
总结
基于上述的一些对比分析,数据架构中存算一体和存算分离的选择建议:
假如数据量较小,是不建议走存算分离架构,至少也得几十或百来T的数据规模再考虑存算分离。因为存算分离虽然主打降本,但它的架构实施是相对复杂的,并且相对是更依靠于缓存cache加快提升性能,而cache这块也是需要综合考虑的成本。
假如本身集群资源管控管控也够用,业务也比较求稳,上线的项目都跑的稳稳当当的,就不建议瞎折腾去跟风上存算分离了。本身存算分离架构实施比存算一体复杂许多,试错成本相对较高,还不如把时间拿去优化优化已有组件和数据建模体系,测试环境测测即可。
性能高要求,还得是走存算一体。存储分离是在满cache的条件下,性能效果才气和存算一体相对持平。那么假如对性能有较高要求的业务线,不要轻易分离。
当然,假如公司数据体量本身不小,公司又不卡成本,又有新的业务线可以试错。可以试试激进些上存算分离架构,有肯定的效果站台后,再考虑大面积铺盖。
末了,Apache Doris 3.0大版本也在近来Release。主要新特性是存算分离架构,当前已经有不少Doris用户在测试环境体验中,欢迎大家多多关注!
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
本帖子中包含更多资源
您需要
登录
才可以下载或查看,没有账号?
立即注册
x
回复
使用道具
举报
0 个回复
倒序浏览
返回列表
快速回复
高级模式
B
Color
Image
Link
Quote
Code
Smilies
您需要登录后才可以回帖
登录
or
立即注册
本版积分规则
发表回复
回帖并转播
回帖后跳转到最后一页
发新帖
回复
写过一篇
金牌会员
这个人很懒什么都没写!
楼主热帖
hibernate入门
kubernetes数据持久化StorageClass动态 ...
26基于java的电影院售票管理系统设计 ...
回忆我的第一个软件项目
Java EnumMap putAll()方法具有什么功 ...
Debian/Ubuntu使用apt安装php8.x
管理软件定制公司 广州管理软件定制开 ...
基于LSTM的多变量多输出温湿度预测 ...
OpenHarmony开源鸿蒙与HarmonyOS商业鸿 ...
Jvm调优
标签云
存储
服务器
快速回复
返回顶部
返回列表