基于FPGA实现SD NAND FLASH的SPI协议读写
在此介绍的是使用FPGA实现SD NAND FLASH的读写操作,以雷龙发展提供的CS创世SD NAND FLASH样品为例,分别讲解电路毗连、读写时序与仿真和实验效果。
目录
1 FLASH背景介绍
2 样品申请
3 电路结构与接口协议
3.1 SD NAND
3.2 SD NAND测试板
3.3 FPGA开辟板
4 SD卡协议与时序流程
4.1 SD卡协议
4.2 SD卡2.0版本初始化步骤
4.3 SD卡的读步骤
4.4 SD卡的写步骤
5 模块代码
5.1 sd_card_top
5.2 sd_card_cmd
5.3 sd_card_sec_read_write
5.4 spi_master
5.5 别的代码
5.5.1 sd_card_test
5.5.2 ax_debounce
5.5.3 seg_decoder
5.5.4 seg_scan
6 实验效果
使用FPGA讲解SD NAND FLASH的文章网上也有许多比较详实的内容,本文的部分思路也是参考了其他博主的博客思路。
1 FLASH背景介绍
简介
Flash是近些年应用最广、速率最快的只读存储器,原理是从 EEPROM 基础上改进发展来的,特点是擦除和编程速率快,因此得名为闪速(或闪耀)存储器,简称闪存。
NOR Flash 和 NAND Flash 是如今市场上两种主要的闪存技能。Intel于1988年首先开辟出 NOR Flash 技能,彻底改变了原先由 EPROM 和 EEPROM 一统天下的局面。紧接着,1989年,东芝公司发表了 NAND Flash 结构,后者的单元电路尺寸险些只是 NOR 器件的一半,可以在给定的芯片尺寸内提供更高的容量,也就相应地低落了代价。
NOR Flash 的特点是以字节为单位随机存取。这样,应用步伐可以直接在 Flash中执行,不必再把步伐代码预先读到 RAM 中。NOR Flash的接口一般以SPI为主,与通常的扩展存储器一样,可以直接毗连随处理器的外围总线上。
NAND Flash应该是如今最热门的存储芯片了。因为我们生存中经常使用的电子产物都会涉及到它。比如你买手机,肯定会思量64GB,还是256GB?买条记本是买256GB,还是512GB容量的硬盘呢?(如今电脑大部分采用了基于 NAND Flash 产物的固态硬盘)。
NAND Flash 主要分为SLC,MLC,TLC,3D TLC ,3DQLC等,随时科技的发展和大众的需求,单位面积内的存储容量越来越大。SLC是指单个存储单元中,能容纳1bit 代表2种状态,0或者1. MLC 则是指单个存储单元中,能容纳2bit,代表4种状态 ,00,01,10,11。 TLC 则是指单个存储单元中,能容纳3bit,代表8种状态,000,001,010,011,100,101,110,111。最开始整个存储单元是2D展开的,也就是平面的,随着必要在单位空间内容纳更多的信息,就开始类似盖楼房一样,在3D也就是立体的方面来发展了。
如果在产物中选择nor flash 还是NAND FLASH,更多的时间是从容量角度来考量,如果存储的内容大于128Mbit 就选择NAND Flash ,小于128Mbit就选择 Nor flash。Nor flash受限于本身的工艺,大于128Mbit的容量,代价就会比128MB SLC NANDFLASH的代价还要贵。
将来发展
当前,NAND flash正在从 2D 发展到 3D。对于 2D NAND flash,如果在同一区域实现更多的单元数目,形成更小的工作区和栅级,便能增大存储容量。直至 2010 年初,2D NAND flash中的扩展一直是这项技能的主要焦点所在;然而,由于内部结构的限定,且储存数据会随时间推移而丢失导致使用寿命缩短,2D的技能已无法再实现扩展。
因此,3D NAND flash渐渐取而代之,成为业界关注焦点,如今所有 NAND 制造商都在开辟和制造 3D NAND flash产物。
在 3D NAND flash 的结构中,存储容量会随着三维叠层中堆叠层数的增长而变大,类似盖楼房,一层一层叠加上去。3D NAND flash 使用了堆叠多层氮氧化物的方法,形成一个被称为“塞子”的垂直深孔,在此中形成一个由氧化物-氮化物-氧化物制成的存储设备。通过这种方法,仅需少量工艺即可同时形成大量单元。在 3D NAND flash 中,电流通过位于圆柱单元中央的多晶硅通道,便能根据存储在氮化硅中的电荷范例实现存储编程和擦除信息。虽然2D NAND flash 技能发展的目的是实现形成较小的单元, 3D NAND flash 的核心技能却是实现更多层数的三维堆叠。
由于NAND FLASH在大容量应用中的便利性,因此作为本日介绍的主角~
什么是SD NAND呢(以下省略FLASH)?下面的内容是从雷龙发展官网的介绍中得到:
SD NAND俗称贴片式TF卡,尽管与TF卡名称类似,但是有较大的区别:
相比常见的TF卡,SD NAND是专门为内置存储进行设计,焊接在PCB板上以供工业级产物的应用。因此对品质稳定性、同等性、以及尺寸都有较高的要求。
2 样品申请
本文所使用的CS创世SD NAND是从深圳雷龙发展申请获得,可以在官网中最上面找到申请样品的入口:
雷龙发展有限公司建立于2008年,专注NAND Flash领域13年。首创人均为步步高/华为技能背景身世。如果有技能题目也可以和其公司人员进行沟通,相关的工作人员非常专业和热心。
3 电路结构与接口协议
3.1 SD NAND
本文所使用的产物是CSNP4GCR01-AMW,是雷龙的第二代产物,产物如下图所示:
数据手册可以在立创商城进行下载,其封装与毗连的电路原理参考图如下图所示:
芯片共包罗8个引脚,包罗4根数据线(6、7、1、2);2根电源线(4、8);1根时钟线(3);1根命令控制线(5)
手册中提供了SD NAND的两种使用模式,分别为SD MODE 以及 SPI MODE。他们所对应的引脚定义,如下图所示:
对于两种模式的切换,官方给出了初始化的方式。下文在代码的时序部分也会涉及到相关内容。
在对SD卡数据读写速率要求不高的情况下,选用SPI通信模式可以说是一种最佳方案。因为在该模式下,同只必要通过四根线就是可以完成所有的数据交换,可以为我们节流出宝贵的FPGA I/O资源。下图给出了SPI一对一通信时,主设备与从设备之间的毗连关系。
因此本文主要介绍SPI MODE下各个引脚的功能:
确定了通讯模式后,也就便于我们后文中,使用这种通讯模式按照SD卡的读写时序进行读写操作。
3.2 SD NAND测试板
单独的SD NAND不便于我们使用FPGA进行读写测试,幸亏官方提供了测试板,如下图所示:
有了它就可以轻松实现SD NAND与我们常见的FPGA开辟板上的Micro SD插槽进行毗连与测试了。
实用产物 GA8,6x8mm 封装的SD NAND产物。
测试板尺寸:长度6.22厘米,宽度2.49厘米,接口长度2.53厘米。
使用方法:将芯片焊接至测试板上,可在原有的Micro SD卡座上直接调试和测试。
准备工具:热风枪,烙铁,锡膏,镊子。
焊接方式: 先用烙铁将芯片的8个PIN脚上锡,中央的一个PIN脚不必要上锡保持NC即可。再将接板板上,对应芯片的8个PIN上锡。
末了用镊子将芯片放到PCB上,热风枪温度调至350℃ 在芯片表面均匀加热即可焊接。
别的事项:测试板上别的元器件无需理会,直接将芯片焊接在测试板上即可当SD卡一样调试。
焊接好后,可以将转接板插入到读卡器,再将读卡器毗连到电脑上看看是否能精确辨认到容量,通过这个方式来判定芯片是否已经焊接正常。
3.3 FPGA开辟板
本文所使用的是黑金的AX301开辟板,上面装有一个 Micro SD 卡座, FPGA 通过 SPI 数据总线访问 Micro SD 卡,SD 卡座和 FPGA 的硬件电路毗连如下:
借由硬件电路的毗连,FPGA可以直接与我们的SD NAND进行通信了。
至此,我们已经实现了SD NANDSPI通信方式方案简直定以及基于此的硬件电路毗连,下一步就是根据SD卡的读写时序讲通信方式初始化为SPI模式,并按照SD卡协议进行读写操作。
4 SD卡协议与时序流程
4.1 SD卡协议
以下内容来自黑金的实验手册:
SD 卡的协议是一种简单的命令/响应的协议。全部命令由主机发起, SD 卡接收到命令后并返
反响应数据。根据命令的不同,返回的数据内容和长度也不同。 SD 卡命令是一个 6 字节组成的命
令包,此中第一个字节为命令号, 命令号高位 bit7 和 bit6 为固定的“01“,别的 6 个 bit 为具体
的命令号。第 2 个字节到第 5 个字节为命令参数。第 6 个字节为 7 个 bit 的 CRC 校验加 1 个 bit 的竣事位。 如果在 SPI 模式的时间, CRC 校验位为可选。 如下图所示, Command 表示命令,通常使用十进制表示名称,比方 CMD17,这个时间 Command 就是十进制的 17。
对于具体的SD卡协议内容,可以参考传送门中的相关内容,给出了比较具体的表明。
SD 卡对每个命令会返回一个响应,每个命令有一定的响应格式。响应的格式跟给它的命令号
有关。在 SPI 模式中,有三种响应格式: R1, R2, R3。
在进行SD NAND的SPI模式读写操作时,主要使用到了以下几种SD卡命令,下面的表格进行简单介绍,这里可以找到完整版:
4.2 SD卡2.0版本初始化步骤
上电后延时至少 74clock,等待 SD 卡内部操作完成
片选 CS 低电平选中 SD 卡
发送 CMD0,必要返回 0x01,进入 Idle 状态
为了区别 SD 卡是 2.0 还是 1.0,或是 MMC 卡,这里根据协议向上兼容的,首先发送只有SD2.0 才有的命令 CMD8,如果 CMD8 返回无错误,则初步判定为 2.0 卡,进一步循环发送命令 CMD55+ACMD41,直到返回 0x00,确定 SD2.0 卡
如果 CMD8 返回错误则判定为 1.0 卡还是 MMC 卡,循环发送 CMD55+ACMD41,返回无错误,则为 SD1.0 卡,到此 SD1.0 卡初始乐成,如果在一定的循环次数下,返回为错误,则进一步发送 CMD1 进行初始化,如果返回无错误,则确定为 MMC 卡,如果在一定的次数下,返回为错误,则不能辨认该卡,初始化竣事。 (通过 CMD16 可以改变 SD 卡一次性读写的长度)
CS 拉高
4.3 SD卡的读步骤
发送 CMD17(单块)或 CMD18(多块)读命令,返回 0X00
接收数据开始令牌 fe(或 fc) +正式数据 512Bytes + CRC 校验 2Bytes(默认正式传输的数据长度是 512Bytes)
4.4 SD卡的写步骤
发送 CMD24(单块)或 CMD25(多块)写命令,返回 0X00
发送数据开始令牌 fe(或 fc) +正式数据 512Bytes + CRC 校验 2Bytes
5 模块代码
本代码所实现的功能,是基于黑金AX301B,实现对SD NAND FLASH的数据写入与读取,并显示在开辟板的数码管上。当按下开辟板上的按键时,会自动将数据加一操作,并进行同步显示。
前文介绍的是SD NAND的协议以及初始化、读写操作的流程,下面介绍代码的组成部分,整个工程主要由以下部分模块构成:
sd_card_test(top模块)
ax_debounce:ax_debounce_m0(按键消抖模块)
sd_card_top:sd_card_top_m0(SD卡top模块)
sd_card_cmd:sd_card_cmd_m0(SD卡指令)
sd_card_sec_read_write:sd_card_sec_read_write_m0(SD卡读写)
spi_master:spi_master_m0(SPI一个字节读写)
seg_decoder:seg_decoder_m0(数码管控制)
seg_decoder:seg_decoder_m1(数码管控制)
seg_scan:seg_scan_m0(数码管控制)
下面主要介绍上述四个加粗的模块以及其功能
5.1 sd_card_top
本模块是SD card的top模块,用来实现不同子模块之间的毗连。
- // Author: meisq //
- // msq@qq.com //
- // ALINX(shanghai) Technology Co.,Ltd //
- // heijin //
- // WEB: http://www.alinx.cn/ //
- // BBS: http://www.heijin.org/ //
- // //
- //
- // //
- // Copyright (c) 2017,ALINX(shanghai) Technology Co.,Ltd //
- // All rights reserved //
- // //
- // This source file may be used and distributed without restriction provided //
- // that this copyright statement is not removed from the file and that any //
- // derivative work contains the original copyright notice and the associated //
- // disclaimer. //
- // //
- //
-
- //==========================================================================
- // Revision History:
- // Date By Revision Change Description
- //--------------------------------------------------------------------------
- // 2017/6/21 meisq 1.0 Original
- //*************************************************************************/
- module sd_card_top
- #(
- parameter SPI_LOW_SPEED_DIV = 248, // SD card low speed mode frequency division parameter,spi clk speed = clk speed /((SPI_LOW_SPEED_DIV + 2) * 2 )
- parameter SPI_HIGH_SPEED_DIV = 0 // SD card high speed mode frequency division parameter,spi clk speed = clk speed /((SPI_HIGH_SPEED_DIV + 2) * 2 )
- )
- (
- input clk,
- input rst,
- output SD_nCS, //SD card chip select (SPI mode)
- output SD_DCLK, //SD card clock
- output SD_MOSI, //SD card controller data output
- input SD_MISO, //SD card controller data input
- output sd_init_done, //SD card initialization is complete
- input sd_sec_read, //SD card sector read
- input[31:0] sd_sec_read_addr, //SD card sector read address
- output[7:0] sd_sec_read_data, //SD card sector read data
- output sd_sec_read_data_valid, //SD card sector read data valid
- output sd_sec_read_end, //SD card sector read end
- input sd_sec_write, //SD card sector write
- input[31:0] sd_sec_write_addr, //SD card sector write address
- input[7:0] sd_sec_write_data, //SD card sector write data
- output sd_sec_write_data_req, //SD card sector write data next clock is valid
- output sd_sec_write_end //SD card sector write end
- );
- wire[15:0] spi_clk_div; //SPI module clock division parameter
- wire cmd_req; //SD card command request
- wire cmd_req_ack; //SD card command request response
- wire cmd_req_error; //SD card command request error
- wire[47:0] cmd; //SD card command
- wire[7:0] cmd_r1; //SD card expect response
- wire[15:0] cmd_data_len; //SD card command read data length
- wire block_read_req; //SD card sector data read request
- wire block_read_valid; //SD card sector data read data valid
- wire[7:0] block_read_data; //SD card sector data read data
- wire block_read_req_ack; //SD card sector data read response
- wire block_write_req; //SD card sector data write request
- wire[7:0] block_write_data; //SD card sector data write data next clock is valid
- wire block_write_data_rd; //SD card sector data write data
- wire block_write_req_ack; //SD card sector data write response
-
- wire nCS_ctrl; //SPI module chip select control
- wire spi_wr_req; //SPI module data sending request
- wire spi_wr_ack; //SPI module data request response
- wire[7:0] spi_data_in; //SPI module send data
- wire[7:0] spi_data_out; //SPI module data returned
- wire[15:0] clk_div;
- sd_card_sec_read_write
- #(
- .SPI_LOW_SPEED_DIV(SPI_LOW_SPEED_DIV),
- .SPI_HIGH_SPEED_DIV(SPI_HIGH_SPEED_DIV)
- )
- sd_card_sec_read_write_m0(
- .clk (clk ),
- .rst (rst ),
- .sd_init_done (sd_init_done ),
- .sd_sec_read (sd_sec_read ),
- .sd_sec_read_addr (sd_sec_read_addr ),
- .sd_sec_read_data (sd_sec_read_data ),
- .sd_sec_read_data_valid (sd_sec_read_data_valid ),
- .sd_sec_read_end (sd_sec_read_end ),
- .sd_sec_write (sd_sec_write ),
- .sd_sec_write_addr (sd_sec_write_addr ),
- .sd_sec_write_data (sd_sec_write_data ),
- .sd_sec_write_data_req (sd_sec_write_data_req ),
- .sd_sec_write_end (sd_sec_write_end ),
- .spi_clk_div (spi_clk_div ),
- .cmd_req (cmd_req ),
- .cmd_req_ack (cmd_req_ack ),
- .cmd_req_error (cmd_req_error ),
- .cmd (cmd ),
- .cmd_r1 (cmd_r1 ),
- .cmd_data_len (cmd_data_len ),
- .block_read_req (block_read_req ),
- .block_read_valid (block_read_valid ),
- .block_read_data (block_read_data ),
- .block_read_req_ack (block_read_req_ack ),
- .block_write_req (block_write_req ),
- .block_write_data (block_write_data ),
- .block_write_data_rd (block_write_data_rd ),
- .block_write_req_ack (block_write_req_ack )
- );
-
- sd_card_cmd sd_card_cmd_m0(
- .sys_clk (clk ),
- .rst (rst ),
- .spi_clk_div (spi_clk_div ),
- .cmd_req (cmd_req ),
- .cmd_req_ack (cmd_req_ack ),
- .cmd_req_error (cmd_req_error ),
- .cmd (cmd ),
- .cmd_r1 (cmd_r1 ),
- .cmd_data_len (cmd_data_len ),
- .block_read_req (block_read_req ),
- .block_read_req_ack (block_read_req_ack ),
- .block_read_data (block_read_data ),
- .block_read_valid (block_read_valid ),
- .block_write_req (block_write_req ),
- .block_write_data (block_write_data ),
- .block_write_data_rd (block_write_data_rd ),
- .block_write_req_ack (block_write_req_ack ),
- .nCS_ctrl (nCS_ctrl ),
- .clk_div (clk_div ),
- .spi_wr_req (spi_wr_req ),
- .spi_wr_ack (spi_wr_ack ),
- .spi_data_in (spi_data_in ),
- .spi_data_out (spi_data_out )
-
- );
-
- spi_master spi_master_m0(
- .sys_clk (clk ),
- .rst (rst ),
- .nCS (SD_nCS ),
- .DCLK (SD_DCLK ),
- .MOSI (SD_MOSI ),
- .MISO (SD_MISO ),
- .clk_div (clk_div ),
- .CPOL (1'b1 ),
- .CPHA (1'b1 ),
- .nCS_ctrl (nCS_ctrl ),
- .wr_req (spi_wr_req ),
- .wr_ack (spi_wr_ack ),
- .data_in (spi_data_in ),
- .data_out (spi_data_out )
- );
复制代码 5.2 sd_card_cmd
sd_card_cmd 模块主要实验 sd 卡根本命令操作,还有上电初始化的 88 个周期的时钟,数据
块的读写,状态机如下:

代码如下:
- //
- // //
- // //
- // Author: meisq //
- // msq@qq.com //
- // ALINX(shanghai) Technology Co.,Ltd //
- // heijin //
- // WEB: http://www.alinx.cn/ //
- // BBS: http://www.heijin.org/ //
- // //
- //
- // //
- // Copyright (c) 2017,ALINX(shanghai) Technology Co.,Ltd //
- // All rights reserved //
- // //
- // This source file may be used and distributed without restriction provided //
- // that this copyright statement is not removed from the file and that any //
- // derivative work contains the original copyright notice and the associated //
- // disclaimer. //
- // //
- //
-
- //==========================================================================
- // Revision History:
- // Date By Revision Change Description
- //--------------------------------------------------------------------------
- // 2017/6/21 meisq 1.0 Original
- //*************************************************************************/
- module sd_card_cmd(
- input sys_clk,
- input rst,
- input[15:0] spi_clk_div, //SPI module clock division parameter
- input cmd_req, //SD card command request
- output cmd_req_ack, //SD card command request response
- output reg cmd_req_error, //SD card command request error
- input[47:0] cmd, //SD card command
- input[7:0] cmd_r1, //SD card expect response
- input[15:0] cmd_data_len, //SD card command read data length
- input block_read_req, //SD card sector data read request
- output reg block_read_valid, //SD card sector data read data valid
- output reg[7:0] block_read_data, //SD card sector data read data
- output block_read_req_ack, //SD card sector data read response
- input block_write_req, //SD card sector data write request
- input[7:0] block_write_data, //SD card sector data write data next clock is valid
- output block_write_data_rd, //SD card sector data write data
- output block_write_req_ack, //SD card sector data write response
- output nCS_ctrl, //SPI module chip select control
- output reg[15:0] clk_div,
- output reg spi_wr_req, //SPI module data sending request
- input spi_wr_ack, //SPI module data request response
- output[7:0] spi_data_in, //SPI module send data
- input[7:0] spi_data_out //SPI module data returned
- );
- parameter S_IDLE = 0;
- parameter S_WAIT = 1;
- parameter S_INIT = 2;
- parameter S_CMD_PRE = 3;
- parameter S_CMD = 4;
- parameter S_CMD_DATA = 5;
- parameter S_READ_WAIT = 6;
- parameter S_READ = 7;
- parameter S_READ_ACK = 8;
- parameter S_WRITE_TOKEN = 9;
- parameter S_WRITE_DATA_0 = 10;
- parameter S_WRITE_DATA_1 = 11;
- parameter S_WRITE_CRC = 12;
- parameter S_WRITE_ACK = 13;
- parameter S_ERR = 14;
- parameter S_END = 15;
-
- reg[3:0] state;
- reg CS_reg;
- reg[15:0] byte_cnt;
- reg[7:0] send_data;
- wire[7:0] data_recv;
- reg[9:0] wr_data_cnt;
-
- assign cmd_req_ack = (state == S_END);
- assign block_read_req_ack = (state == S_READ_ACK);
- assign block_write_req_ack= (state == S_WRITE_ACK);
- assign block_write_data_rd = (state == S_WRITE_DATA_0);
- assign spi_data_in = send_data;
- assign data_recv = spi_data_out;
- assign nCS_ctrl = CS_reg;
- always@(posedge sys_clk or posedge rst)
- begin
- if(rst == 1'b1)
- begin
- CS_reg <= 1'b1;
- spi_wr_req <= 1'b0;
- byte_cnt <= 16'd0;
- clk_div <= 16'd0;
- send_data <= 8'hff;
- state <= S_IDLE;
- cmd_req_error <= 1'b0;
- wr_data_cnt <= 10'd0;
- end
- else
- case(state)
- S_IDLE:
- begin
- state <= S_INIT;
- clk_div <= spi_clk_div;
- CS_reg <= 1'b1;
- end
- S_INIT:
- begin
- //send 11 bytes on power(at least 74 SPI clocks)
- if(spi_wr_ack == 1'b1)
- begin
- if(byte_cnt >= 16'd10)
- begin
- byte_cnt <= 16'd0;
- spi_wr_req <= 1'b0;
- state <= S_WAIT;
- end
- begin
- byte_cnt <= byte_cnt + 16'd1;
- end
- end
- else
- begin
- spi_wr_req <= 1'b1;
- send_data <= 8'hff;
- end
- end
- S_WAIT:
- begin
- cmd_req_error <= 1'b0;
- wr_data_cnt <= 10'd0;
- //wait for instruction
- if(cmd_req == 1'b1)
- state <= S_CMD_PRE;
- else if(block_read_req == 1'b1)
- state <= S_READ_WAIT;
- else if(block_write_req == 1'b1)
- state <= S_WRITE_TOKEN;
- clk_div <= spi_clk_div;
- end
- S_CMD_PRE:
- begin
- //before sending a command, send an byte 'ff',provide some clocks
- if(spi_wr_ack == 1'b1)
- begin
- state <= S_CMD;
- spi_wr_req <= 1'b0;
- byte_cnt <= 16'd0;
- end
- else
- begin
- spi_wr_req <= 1'b1;
- CS_reg <= 1'b1;
- send_data <= 8'hff;
- end
- end
- S_CMD:
- begin
- if(spi_wr_ack == 1'b1)
- begin
- if((byte_cnt == 16'hffff) || (data_recv != cmd_r1 && data_recv[7] == 1'b0))
- begin
- state <= S_ERR;
- spi_wr_req <= 1'b0;
- end
- else if(data_recv == cmd_r1)
- begin
- spi_wr_req <= 1'b0;
- if(cmd_data_len != 16'd0)
- begin
- state <= S_CMD_DATA;
- byte_cnt <= 16'd0;
- end
- else
- state <= S_END;
- end
- else
- byte_cnt <= byte_cnt + 16'd1;
- end
- else
- begin
- spi_wr_req <= 1'b1;
- CS_reg <= 1'b0;
- if(byte_cnt == 16'd0)
- send_data <= (cmd[47:40] | 8'h40);
- else if(byte_cnt == 16'd1)
- send_data <= cmd[39:32];
- else if(byte_cnt == 16'd2)
- send_data <= cmd[31:24];
- else if(byte_cnt == 16'd3)
- send_data <= cmd[23:16];
- else if(byte_cnt == 16'd4)
- send_data <= cmd[15:8];
- else if(byte_cnt == 16'd5)
- send_data <= cmd[7:0];
- else
- send_data <= 8'hff;
- end
- end
- S_CMD_DATA:
- begin
- if(spi_wr_ack == 1'b1)
- begin
- if(byte_cnt == cmd_data_len - 16'd1)
- begin
- state <= S_END;
- spi_wr_req <= 1'b0;
- byte_cnt <= 16'd0;
- end
- else
- begin
- byte_cnt <= byte_cnt + 16'd1;
- end
- end
- else
- begin
- spi_wr_req <= 1'b1;
- send_data <= 8'hff;
- end
- end
- S_READ_WAIT:
- begin
- if(spi_wr_ack == 1'b1 && data_recv == 8'hfe)
- begin
- spi_wr_req <= 1'b0;
- state <= S_READ;
- byte_cnt <= 16'd0;
- end
- else
- begin
- spi_wr_req <= 1'b1;
- send_data <= 8'hff;
- end
- end
- S_READ:
- begin
- if(spi_wr_ack == 1'b1)
- begin
- if(byte_cnt == 16'd513)
- begin
- state <= S_READ_ACK;
- spi_wr_req <= 1'b0;
- byte_cnt <= 16'd0;
- end
- else
- begin
- byte_cnt <= byte_cnt + 16'd1;
- end
- end
- else
- begin
- spi_wr_req <= 1'b1;
- send_data <= 8'hff;
- end
- end
- S_WRITE_TOKEN:
- if(spi_wr_ack == 1'b1)
- begin
- state <= S_WRITE_DATA_0;
- spi_wr_req <= 1'b0;
- end
- else
- begin
- spi_wr_req <= 1'b1;
- send_data <= 8'hfe;
- end
- S_WRITE_DATA_0:
- begin
- state <= S_WRITE_DATA_1;
- wr_data_cnt <= wr_data_cnt + 10'd1;
- end
- S_WRITE_DATA_1:
- begin
- if(spi_wr_ack == 1'b1 && wr_data_cnt == 10'd512)
- begin
- state <= S_WRITE_CRC;
- spi_wr_req <= 1'b0;
- end
- else if(spi_wr_ack == 1'b1)
- begin
- state <= S_WRITE_DATA_0;
- spi_wr_req <= 1'b0;
- end
- else
- begin
- spi_wr_req <= 1'b1;
- send_data <= block_write_data;
- end
- end
- S_WRITE_CRC:
- begin
- if(spi_wr_ack == 1'b1)
- begin
- if(byte_cnt == 16'd2)
- begin
- state <= S_WRITE_ACK;
- spi_wr_req <= 1'b0;
- byte_cnt <= 16'd0;
- end
- else
- begin
- byte_cnt <= byte_cnt + 16'd1;
- end
- end
- else
- begin
- spi_wr_req <= 1'b1;
- send_data <= 8'hff;
- end
- end
- S_ERR:
- begin
- state <= S_END;
- cmd_req_error <= 1'b1;
- end
- S_READ_ACK,S_WRITE_ACK,S_END:
- begin
- state <= S_WAIT;
- end
- default:
- state <= S_IDLE;
- endcase
- end
- always@(posedge sys_clk or posedge rst)
- begin
- if(rst == 1'b1)
- block_read_valid <= 1'b0;
- else if(state == S_READ && byte_cnt < 16'd512)
- block_read_valid <= spi_wr_ack;
- else
- block_read_valid <= 1'b0;
- end
-
- always@(posedge sys_clk or posedge rst)
- begin
- if(rst == 1'b1)
- block_read_data <= 8'd0;
- else if(state == S_READ && spi_wr_ack == 1'b1)
- block_read_data <= data_recv;
- end
复制代码 5.3 sd_card_sec_read_write
sd_card_sec_read_write 模块继续完成 SD 卡初始化,然后等待扇区读写指令,并完成扇区的
读写操作。 下图为模块的状态机转换图,首先发送 CMD0 命令,然后发送 CMD8 命令,再发送
CMD55,接着发送 ACMD41,如果应答正常, sd 卡初始化完成,等待扇区的读写。

代码如下:
- //
- // //
- // //
- // Author: meisq //
- // msq@qq.com //
- // ALINX(shanghai) Technology Co.,Ltd //
- // heijin //
- // WEB: http://www.alinx.cn/ //
- // BBS: http://www.heijin.org/ //
- // //
- //
- // //
- // Copyright (c) 2017,ALINX(shanghai) Technology Co.,Ltd //
- // All rights reserved //
- // //
- // This source file may be used and distributed without restriction provided //
- // that this copyright statement is not removed from the file and that any //
- // derivative work contains the original copyright notice and the associated //
- // disclaimer. //
- // //
- //
- //===============================================================================
- // Revision History:
- // Date By Revision Change Description
- //-------------------------------------------------------------------------------
- // 2017/6/21 meisq 1.0 Original
- //*******************************************************************************/
- module sd_card_sec_read_write
- #(
- parameter SPI_LOW_SPEED_DIV = 248, // spi clk speed = clk speed /((SPI_LOW_SPEED_DIV + 2) * 2 )
- parameter SPI_HIGH_SPEED_DIV = 0 // spi clk speed = clk speed /((SPI_HIGH_SPEED_DIV + 2) * 2 )
- )
- (
- input clk,
- input rst,
- output reg sd_init_done,
- input sd_sec_read,
- input[31:0] sd_sec_read_addr,
- output[7:0] sd_sec_read_data,
- output sd_sec_read_data_valid,
- output sd_sec_read_end,
- input sd_sec_write,
- input[31:0] sd_sec_write_addr,
- input[7:0] sd_sec_write_data,
- output sd_sec_write_data_req,
- output sd_sec_write_end,
- output reg[15:0] spi_clk_div,
- output reg cmd_req,
- input cmd_req_ack,
- input cmd_req_error,
- output reg[47:0] cmd,
- output reg[7:0] cmd_r1,
- output reg[15:0] cmd_data_len,
- output reg block_read_req,
- input block_read_valid,
- input[7:0] block_read_data,
- input block_read_req_ack,
- output reg block_write_req,
- output[7:0] block_write_data,
- input block_write_data_rd,
- input block_write_req_ack
- );
- reg[7:0] read_data;
- reg[31:0] timer;
- localparam S_IDLE = 0;
- localparam S_CMD0 = 1;
- localparam S_CMD8 = 2;
- localparam S_CMD55 = 3;
- localparam S_CMD41 = 4;
- localparam S_CMD17 = 5;
- localparam S_READ = 6;
- localparam S_CMD24 = 7;
- localparam S_WRITE = 8;
- localparam S_ERR = 14;
- localparam S_WRITE_END = 15;
- localparam S_READ_END = 16;
- localparam S_WAIT_READ_WRITE = 17;
- localparam S_CMD16 = 18;
- reg[4:0] state;
- reg[31:0] sec_addr;
- assign sd_sec_read_data_valid = (state == S_READ) && block_read_valid;
- assign sd_sec_read_data = block_read_data;
- assign sd_sec_read_end = (state == S_READ_END);
- assign sd_sec_write_data_req = (state == S_WRITE) && block_write_data_rd;
- assign block_write_data = sd_sec_write_data;
- assign sd_sec_write_end = (state == S_WRITE_END);
- always@(posedge clk or posedge rst)
- begin
- if(rst == 1'b1)
- begin
- state <= S_IDLE;
- cmd_req <= 1'b0;
- cmd_data_len <= 16'd0;
- cmd_r1 <= 8'd0;
- cmd <= 48'd0;
- spi_clk_div <= SPI_LOW_SPEED_DIV[15:0];
- block_write_req <= 1'b0;
- block_read_req <= 1'b0;
- sec_addr <= 32'd0;
- sd_init_done <= 1'b0;
- end
- else
- case(state)
- S_IDLE:
- begin
- state <= S_CMD0;
- sd_init_done <= 1'b0;
- spi_clk_div <= SPI_LOW_SPEED_DIV[15:0];
- end
- S_CMD0:
- begin
- if(cmd_req_ack & ~cmd_req_error)
- begin
- state <= S_CMD8;
- cmd_req <= 1'b0;
- end
- else
- begin
- cmd_req <= 1'b1;
- cmd_data_len <= 16'd0;
- cmd_r1 <= 8'h01;
- cmd <= {8'd0,8'h00,8'h00,8'h00,8'h00,8'h95};
- end
- end
- S_CMD8:
- begin
- if(cmd_req_ack & ~cmd_req_error)
- begin
- state <= S_CMD55;
- cmd_req <= 1'b0;
- end
- else
- begin
- cmd_req <= 1'b1;
- cmd_data_len <= 16'd4;
- cmd_r1 <= 8'h01;
- cmd <= {8'd8,8'h00,8'h00,8'h01,8'haa,8'h87};
- end
- end
- S_CMD55:
- begin
- if(cmd_req_ack & ~cmd_req_error)
- begin
- state <= S_CMD41;
- cmd_req <= 1'b0;
- end
- else
- begin
- cmd_req <= 1'b1;
- cmd_data_len <= 16'd0;
- cmd_r1 <= 8'h01;
- cmd <= {8'd55,8'h00,8'h00,8'h00,8'h00,8'hff};
- end
- end
- S_CMD41:
- begin
- if(cmd_req_ack & ~cmd_req_error)
- begin
- state <= S_CMD16;
- cmd_req <= 1'b0;
- sd_init_done <= 1'b1;
- spi_clk_div <= SPI_HIGH_SPEED_DIV[15:0];
- end
- else if(cmd_req_ack)
- begin
- state <= S_CMD55;
- end
- else
- begin
- cmd_req <= 1'b1;
- cmd_data_len <= 16'd0;
- cmd_r1 <= 8'h00;
- cmd <= {8'd41,8'h40,8'h00,8'h00,8'h00,8'hff};
- end
- end
- S_CMD16:
- begin
- if(cmd_req_ack & ~cmd_req_error)
- begin
- state <= S_WAIT_READ_WRITE;
- cmd_req <= 1'b0;
- sd_init_done <= 1'b1;
- spi_clk_div <= SPI_HIGH_SPEED_DIV[15:0];
- end
- else if(cmd_req_ack)
- begin
- state <= S_CMD55;
- end
- else
- begin
- cmd_req <= 1'b1;
- cmd_data_len <= 16'd0;
- cmd_r1 <= 8'h00;
- cmd <= {8'd16,32'd512,8'hff};
- end
- end
- S_WAIT_READ_WRITE:
- begin
- if(sd_sec_write == 1'b1)
- begin
- state <= S_CMD24;
- sec_addr <= sd_sec_write_addr;
- end
- else if(sd_sec_read == 1'b1)
- begin
- state <= S_CMD17;
- sec_addr <= sd_sec_read_addr;
- end
- spi_clk_div <= 16'd0;
- end
- S_CMD24:
- begin
- if(cmd_req_ack & ~cmd_req_error)
- begin
- state <= S_WRITE;
- cmd_req <= 1'b0;
- end
- else
- begin
- cmd_req <= 1'b1;
- cmd_data_len <= 16'd0;
- cmd_r1 <= 8'h00;
- cmd <= {8'd24,sec_addr,8'hff};
- end
- end
- S_WRITE:
- begin
- if(block_write_req_ack == 1'b1)
- begin
- block_write_req <= 1'b0;
- state <= S_WRITE_END;
- end
- else
- block_write_req <= 1'b1;
- end
- S_CMD17:
- begin
- if(cmd_req_ack & ~cmd_req_error)
- begin
- state <= S_READ;
- cmd_req <= 1'b0;
- end
- else
- begin
- cmd_req <= 1'b1;
- cmd_data_len <= 16'd0;
- cmd_r1 <= 8'h00;
- cmd <= {8'd17,sec_addr,8'hff};
- end
- end
- S_READ:
- begin
- if(block_read_req_ack)
- begin
- state <= S_READ_END;
- block_read_req <= 1'b0;
- end
- else
- begin
- block_read_req <= 1'b1;
- end
- end
- S_WRITE_END:
- begin
- state <= S_WAIT_READ_WRITE;
- end
- S_READ_END:
- begin
- state <= S_WAIT_READ_WRITE;
- end
- default:
- state <= S_IDLE;
- endcase
- end
- endmodule
复制代码 5.4 spi_master
这一模块用来完成SPI一个字节的读写。
spi master 状态机设计, 主要完成一个字节 spi 数据的读写,由于是全双工的,写一个字节的
同时也读一个字节。 首先空闲状态“IDLE”接收到写请求后进入“DCLK_IDLE”状态,这个状态为
spi 时钟沿变化保持一定的时间,用来控制 spi 时钟的周期,然后进入 spi 时钟沿的变化状态,一
个字节上升沿和降落沿一共 16 个数据沿。 在末了一个数据沿进入“LAST_HALF_CYCLE”状态,为
让末了一个沿也保持一定的时间,再进入应答状态,完成一次写请求。spi_master 模块中模拟了一个 spi 时钟,在状态机进入到‘DCLK_EDGE’时进行翻转。状态机图示如下:

代码如下:
- // Author: meisq //
- // msq@qq.com //
- // ALINX(shanghai) Technology Co.,Ltd //
- // heijin //
- // WEB: http://www.alinx.cn/ //
- // BBS: http://www.heijin.org/ //
- // //
- //
- // //
- // Copyright (c) 2017,ALINX(shanghai) Technology Co.,Ltd //
- // All rights reserved //
- // //
- // This source file may be used and distributed without restriction provided //
- // that this copyright statement is not removed from the file and that any //
- // derivative work contains the original copyright notice and the associated //
- // disclaimer. //
- // //
- //
- //==========================================================================
- // Revision History:
- // Date By Revision Change Description
- //--------------------------------------------------------------------------
- // 2017/6/19 meisq 1.0 Original
- //*************************************************************************/
- module spi_master
- (
- input sys_clk,
- input rst,
- output nCS, //chip select (SPI mode)
- output DCLK, //spi clock
- output MOSI, //spi data output
- input MISO, //spi input
- input CPOL,
- input CPHA,
- input nCS_ctrl,
- input[15:0] clk_div,
- input wr_req,
- output wr_ack,
- input[7:0] data_in,
- output[7:0] data_out
- );
- localparam IDLE = 0;
- localparam DCLK_EDGE = 1;
- localparam DCLK_IDLE = 2;
- localparam ACK = 3;
- localparam LAST_HALF_CYCLE = 4;
- localparam ACK_WAIT = 5;
- reg DCLK_reg;
- reg[7:0] MOSI_shift;
- reg[7:0] MISO_shift;
- reg[2:0] state;
- reg[2:0] next_state;
- reg [15:0] clk_cnt;
- reg[4:0] clk_edge_cnt;
- assign MOSI = MOSI_shift[7];
- assign DCLK = DCLK_reg;
- assign data_out = MISO_shift;
- assign wr_ack = (state == ACK);
- assign nCS = nCS_ctrl;
- always@(posedge sys_clk or posedge rst)
- begin
- if(rst)
- state <= IDLE;
- else
- state <= next_state;
- end
- always@(*)
- begin
- case(state)
- IDLE:
- if(wr_req == 1'b1)
- next_state <= DCLK_IDLE;
- else
- next_state <= IDLE;
- DCLK_IDLE:
- //half a SPI clock cycle produces a clock edge
- if(clk_cnt == clk_div)
- next_state <= DCLK_EDGE;
- else
- next_state <= DCLK_IDLE;
- DCLK_EDGE:
- //a SPI byte with a total of 16 clock edges
- if(clk_edge_cnt == 5'd15)
- next_state <= LAST_HALF_CYCLE;
- else
- next_state <= DCLK_IDLE;
- //this is the last data edge
- LAST_HALF_CYCLE:
- if(clk_cnt == clk_div)
- next_state <= ACK;
- else
- next_state <= LAST_HALF_CYCLE;
- //send one byte complete
- ACK:
- next_state <= ACK_WAIT;
- //wait for one clock cycle, to ensure that the cancel request signal
- ACK_WAIT:
- next_state <= IDLE;
- default:
- next_state <= IDLE;
- endcase
- end
- always@(posedge sys_clk or posedge rst)
- begin
- if(rst)
- DCLK_reg <= 1'b0;
- else if(state == IDLE)
- DCLK_reg <= CPOL;
- else if(state == DCLK_EDGE)
- DCLK_reg <= ~DCLK_reg;//SPI clock edge
- end
- //SPI clock wait counter
- always@(posedge sys_clk or posedge rst)
- begin
- if(rst)
- clk_cnt <= 16'd0;
- else if(state == DCLK_IDLE || state == LAST_HALF_CYCLE)
- clk_cnt <= clk_cnt + 16'd1;
- else
- clk_cnt <= 16'd0;
- end
- //SPI clock edge counter
- always@(posedge sys_clk or posedge rst)
- begin
- if(rst)
- clk_edge_cnt <= 5'd0;
- else if(state == DCLK_EDGE)
- clk_edge_cnt <= clk_edge_cnt + 5'd1;
- else if(state == IDLE)
- clk_edge_cnt <= 5'd0;
- end
- //SPI data output
- always@(posedge sys_clk or posedge rst)
- begin
- if(rst)
- MOSI_shift <= 8'd0;
- else if(state == IDLE && wr_req)
- MOSI_shift <= data_in;
- else if(state == DCLK_EDGE)
- if(CPHA == 1'b0 && clk_edge_cnt[0] == 1'b1)
- MOSI_shift <= {MOSI_shift[6:0],MOSI_shift[7]};
- else if(CPHA == 1'b1 && (clk_edge_cnt != 5'd0 && clk_edge_cnt[0] == 1'b0))
- MOSI_shift <= {MOSI_shift[6:0],MOSI_shift[7]};
- end
- //SPI data input
- always@(posedge sys_clk or posedge rst)
- begin
- if(rst)
- MISO_shift <= 8'd0;
- else if(state == IDLE && wr_req)
- MISO_shift <= 8'h00;
- else if(state == DCLK_EDGE)
- if(CPHA == 1'b0 && clk_edge_cnt[0] == 1'b0)
- MISO_shift <= {MISO_shift[6:0],MISO};
- else if(CPHA == 1'b1 && (clk_edge_cnt[0] == 1'b1))
- MISO_shift <= {MISO_shift[6:0],MISO};
- end
- endmodule
复制代码 6 实验效果
下载实验步伐后,可以看到数码管显示一个数字,这个数字是存储在 sd 卡中第一扇区的第一个数据,数据是随机的,这个时间按键 KEY1 按下,数字加一,并写入了 sd 卡,再次下载步伐,可以看到直接显示更新后的数据。
人之所以能,是信赖能
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |