一、选择体系
这个镜像可以
1.1 更新情况
python -m pip install --upgrade pip
二、安装利用whisper
我在另一篇博客也写道,互相交流学习
whisper-深入-语者分离
2.1 创建情况
- # ssh登录系统
- # 切换到root用户
- mkdir /opt/tools/
- cd /opt/tools/
- # 安装miniconda
- wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
- chmod +x Miniconda3-latest-Linux-x86_64.sh
- ./Miniconda3-latest-Linux-x86_64.sh
- #按提示操作,安装目录建议选择/opt/miniconda3
- #创建软链接
- ln -s /opt/miniconda3/bin/conda /usr/local/bin/conda
- #退出shell重新登陆,然后后续操作
- #创建环境
- conda create -n whisper python=3.9
- conda activate whisper
复制代码 2.1 安装
2.1.1安装底子包
- pip install -U openai-whisper
- 或者
- pip install git+https://github.com/openai/whisper.git
- 或者
- pip install -i https://pypi.tuna.tsinghua.edu.cn/simple openai-whisper
复制代码 2.1.2安装依靠
- pip install tiktoken
- pip install setuptools-rust
- #在conda whisper环境外执行,安装ffmpeg
- sudo apt update && sudo apt install ffmpeg
复制代码 3测试1
- whisper audio.mp3 --model medium --language Chinese
复制代码 代码调用
- import whisper
- import arrow
- # 定义模型、音频地址、录音开始时间
- def excute(model_name,file_path,start_time):
- model = whisper.load_model(model_name)
- result = model.transcribe(file_path)
- for segment in result["segments"]:
- now = arrow.get(start_time)
- start = now.shift(seconds=segment["start"]).format("YYYY-MM-DD HH:mm:ss")
- end = now.shift(seconds=segment["end"]).format("YYYY-MM-DD HH:mm:ss")
- print("【"+start+"->" +end+"】:"+segment["text"])
- if __name__ == '__main__':
- excute("base","1001.mp3","2022-10-24 16:23:00")
复制代码 3测试2 语着分离
创建key
https://huggingface.co/settings/tokens
创建代码
- cache_dir:模型啥的下载后存放位置
- use_auth_token :创建的key
- import os
- import whisper
- from pyannote.audio import Pipeline
- from pyannote_whisper.utils import diarize_text
- import concurrent.futures
- pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token="你申请的key",cache_dir="/root/autodl-tmp/whisper/env")
- output_dir = '/root/autodl-tmp/pyannote-whisper'
- def process_audio(file_path):
- model = whisper.load_model("large")
- asr_result = model.transcribe(file_path, initial_prompt="语音转换")
- diarization_result = pipeline(file_path)
- final_result = diarize_text(asr_result, diarization_result)
- output_file = os.path.join(output_dir, os.path.basename(file_path)[:-4] + '.txt')
- with open(output_file, 'w') as f:
- for seg, spk, sent in final_result:
- line = f'{seg.start:.2f} {seg.end:.2f} {spk} {sent}\n'
- f.write(line)
- if not os.path.exists(output_dir):
- os.makedirs(output_dir)
- wave_dir = '/root/autodl-tmp/pyannote-whisper'
- # 获取当前目录下所有wav文件名
- wav_files = [os.path.join(wave_dir, file) for file in os.listdir(wave_dir) if file.endswith('.wav')]
- # 处理每个wav文件
- with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
- executor.map(process_audio, wav_files)
- print('处理完成!')
复制代码 报错ModuleNotFoundError: No module named 'pyannote'
解决方案
- pip install pyannote.audio
复制代码 报错No module named 'pyannote_whisper'
如果你利用利用AutoDL平台,你可以利用学术代理加速
- source /etc/network_turbo
复制代码- git clone https://github.com/yinruiqing/pyannote-whisper.git
- cd pyannote-whisper
- pip install -r requirements.txt
复制代码
这个错误可能是由于缺少或不正确安装了所需的 sndfile 库。sndfile 是一个用于处理音频文件的库,它提供了多种格式的读写支持。
你可以尝试安装 sndfile 库,方法如下:
在 Ubuntu 上,利用以下命令安装:sudo apt-get install libsndfile1-dev
在 CentOS 上,利用以下命令安装:sudo yum install libsndfile-devel
在 macOS 上,利用 Homebrew 安装:brew install libsndfile
然后重新执行如上指令
在项目内里写代码就可以了,大概复制代码内里的pyannote_whisper.utils模块代码
三、安装利用funASR
1 安装
官网
1.1 安装 Conda(可选)
- wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
- sh Miniconda3-latest-Linux-x86_64.sh
- source ~/.bashrc
- conda create -n funasr python=3.8
- conda activate funasr
复制代码 1.2 安装 Pytorch(版本 >= 1.11.0)
- pip3 install torch torchaudio
复制代码 如果您的情况中存在CUDA,您应该安装与CUDA匹配的版本的pytorch。匹配列表可以在docs中找到。
1.3 安装funASR
从 pip 安装
- pip3 install -U funasr
- # 对于中国的用户,您可以使用以下命令进行安装:
- # pip3 install -U funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple
复制代码 大概从源码安装funASR
- git clone https://github.com/alibaba/FunASR.git && cd FunASR
- pip3 install -e ./
复制代码 1.4 安装 modelscope(可选)
如果您想利用 ModelScope 中的预练习模型,您应该安装 modelscope:
- pip3 install -U modelscope
- # 对于中国的用户,您可以使用以下命令进行安装:
- # pip3 install -U modelscope -i https://mirror.sjtu.edu.cn/pypi/web/simple
复制代码 1.5 如何从当地模型路径推断(可选)
通过 modelscope-sdk 将模型下载到当地目录
- from modelscope.hub.snapshot_download import snapshot_download
- local_dir_root = "./models_from_modelscope"
- model_dir = snapshot_download('damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch', cache_dir=local_dir_root)
复制代码 大概通过 git lfs 将模型下载到当地目录
- git lfs install
- # git clone https://www.modelscope.cn/<namespace>/<model-name>.git
- git clone https://www.modelscope.cn/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch.git
复制代码 利用当地模型路径举行推断
- local_dir_root = "./models_from_modelscope/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
- inference_pipeline = pipeline(
- task=Tasks.auto_speech_recognition,
- model=local_dir_root,
- )
复制代码 2 利用funASR
2.1 利用funASR
- from modelscope.pipelines import pipeline
- from modelscope.utils.constant import Tasks
- inference_pipeline = pipeline(
- task=Tasks.auto_speech_recognition,
- model='damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
- model_revision="v1.2.4")
- rec_result = inference_pipeline(audio_in='1001.wav')
- print(rec_result['sentences'])
- with open('result.txt', 'w', encoding='utf-8') as f:
- print(rec_result, file=f)
- print(rec_result)
复制代码
2.2 利用 pyannote.audio 举行语者分离
第一步:安装依靠
- pip install pyannote.audio
复制代码 第二步:创建key
https://huggingface.co/settings/tokens
第三步:测试pyannote.audio
- from pyannote.audio import Pipeline
- pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token="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")
- # send pipeline to GPU (when available)
- import torch
- pipeline.to(torch.device("cuda"))
- # apply pretrained pipeline
- diarization = pipeline("1002.wav")
- print(diarization)
- # print the result
- for turn, _, speaker in diarization.itertracks(yield_label=True):
- print(f"start={turn.start:.1f}s stop={turn.end:.1f}s speaker_{speaker}")
- # start=0.2s stop=1.5s speaker_0
- # start=1.8s stop=3.9s speaker_1
- # start=4.2s stop=5.7s speaker_0
- # ...
复制代码
2.3 funAS整合pyannote.audio
1.1编写算法
- from pyannote.core import Segment, Annotation, Timeline
- def get_text_with_timestamp(transcribe_res):
- timestamp_texts = []
- for item in transcribe_res['segments']:
- start = item['start']
- end = item['end']
- text = item['text']
- timestamp_texts.append((Segment(start, end), text))
-
- print(timestamp_texts)
- return timestamp_texts
- def get_text_with_timestampFun(transcribe_res):
- print(transcribe_res['sentences'])
- timestamp_texts = []
- for item in transcribe_res['sentences']:
- start = item['start']/1000.0
- end = item['end']/1000.0
- text = item['text']
- timestamp_texts.append((Segment(start, end), text))
- return timestamp_texts
- def add_speaker_info_to_text(timestamp_texts, ann):
- spk_text = []
- for seg, text in timestamp_texts:
- #这行代码的作用是在给定的时间段 seg 中根据说话人分离结果 ann 获取出现次数最多的说话人。
- spk = ann.crop(seg).argmax()
- spk_text.append((seg, spk, text))
- return spk_text
- def merge_cache(text_cache):
- sentence = ''.join([item[-1] for item in text_cache])
- spk = text_cache[0][1]
- start = text_cache[0][0].start
- end = text_cache[-1][0].end
- return Segment(start, end), spk, sentence
- PUNC_SENT_END = ['.', '?', '!', '。', '?', '!']
- def merge_sentence(spk_text):
- merged_spk_text = []
- pre_spk = None
- text_cache = []
- for seg, spk, text in spk_text:
- if spk != pre_spk and pre_spk is not None and len(text_cache) > 0:
- merged_spk_text.append(merge_cache(text_cache))
- text_cache = [(seg, spk, text)]
- pre_spk = spk
- elif text[-1] in PUNC_SENT_END:
- text_cache.append((seg, spk, text))
- merged_spk_text.append(merge_cache(text_cache))
- text_cache = []
- pre_spk = spk
- else:
- text_cache.append((seg, spk, text))
- pre_spk = spk
- if len(text_cache) > 0:
- merged_spk_text.append(merge_cache(text_cache))
- return merged_spk_text
- def diarize_text(transcribe_res, diarization_result):
- timestamp_texts = get_text_with_timestampFun(transcribe_res)
- spk_text = add_speaker_info_to_text(timestamp_texts, diarization_result)
- res_processed = merge_sentence(spk_text)
- return res_processed
- def write_to_txt(spk_sent, file):
- with open(file, 'w') as fp:
- for seg, spk, sentence in spk_sent:
- line = f'{seg.start:.2f} {seg.end:.2f} {spk} {sentence}\n'
- fp.write(line)
复制代码 1.2调用
- import os
- import whisper
- from pyannote.audio import Pipeline
- from pyannote_funasr.utils import diarize_text
- import concurrent.futures
- from modelscope.pipelines import pipeline
- from modelscope.utils.constant import Tasks
- # 输出位置
- output_dir = '/root/autodl-tmp/pyannote-whisper'
- from modelscope.pipelines import pipeline
- from modelscope.utils.constant import Tasks
- # 语音转文字的模型
- inference_pipeline = pipeline(
- task=Tasks.auto_speech_recognition,
- model='damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
- model_revision="v1.2.4")
- # rec_result = inference_pipeline(audio_in='1002.wav')
- # with open('result.txt', 'w', encoding='utf-8') as f:
- # print(rec_result, file=f)
- # # print(rec_result)
- def process_audio(file_path):
- print("----------1")
- asr_result = inference_pipeline(audio_in=file_path)
- print("-----------2.2")
- # 语者分离pipeline
- pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token="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")
- # 使用显卡加速
- import torch
- pipeline.to(torch.device("cuda"))
- #num_speakers 几个说话者,可以不带
- diarization_result = pipeline(file_path, num_speakers=2)
- # 转文字结果
- print(diarization_result)
- # 进行语着分离
- final_result = diarize_text(asr_result, diarization_result)
- print("-----------5")
- # 输出结果
- output_file = os.path.join(output_dir, os.path.basename(file_path)[:-4] + '.txt')
- with open(output_file, 'w') as f:
- for seg, spk, sent in final_result:
- line = f'{seg.start:.2f} {seg.end:.2f} {spk} {sent}\n'
- f.write(line)
- print(line)
- # 判断输出文件夹是否存在
- if not os.path.exists(output_dir):
- os.makedirs(output_dir)
- wave_dir = '/root/autodl-tmp/pyannote-whisper'
- # 获取当前目录下所有wav文件名
- wav_files = [os.path.join(wave_dir, file) for file in os.listdir(wave_dir) if file.endswith('.wav')]
- # 处理每个wav文件
- with concurrent.futures.ThreadPoolExecutor() as executor:
- executor.map(process_audio, wav_files)
- print('处理完成!')
复制代码
3.微调
微调.py
- import os
- from modelscope.metainfo import Trainers
- from modelscope.trainers import build_trainer
- from modelscope.msdatasets.audio.asr_dataset import ASRDataset
- def modelscope_finetune(params):
- if not os.path.exists(params.output_dir):
- os.makedirs(params.output_dir, exist_ok=True)
- # dataset split ["train", "validation"]
- ds_dict = ASRDataset.load(params.data_path, namespace='speech_asr')
- kwargs = dict(
- model=params.model,
- data_dir=ds_dict,
- dataset_type=params.dataset_type,
- work_dir=params.output_dir,
- batch_bins=params.batch_bins,
- max_epoch=params.max_epoch,
- lr=params.lr)
- trainer = build_trainer(Trainers.speech_asr_trainer, default_args=kwargs)
- trainer.train()
- if __name__ == '__main__':
- from funasr.utils.modelscope_param import modelscope_args
- params = modelscope_args(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")
- params.output_dir = "./checkpoint" # 模型保存路径
- params.data_path = "speech_asr_aishell1_trainsets" # 数据路径,可以为modelscope中已上传数据,也可以是本地数据
- params.dataset_type = "small" # 小数据量设置small,若数据量大于1000小时,请使用large
- params.batch_bins = 2000 # batch size,如果dataset_type="small",batch_bins单位为fbank特征帧数,如果dataset_type="large",batch_bins单位为毫秒,
- params.max_epoch = 50 # 最大训练轮数
- params.lr = 0.00005 # 设置学习率
-
- modelscope_finetune(params)
复制代码 免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |