Python图像处理丨基于K-Means聚类的图像区域分割

打印 上一主题 下一主题

主题 948|帖子 948|积分 2844

摘要:本篇文章主要讲解基于理论的图像分割方法,通过K-Means聚类算法实现图像分割或颜色分层处理。
本文分享自华为云社区《[Python图像处理] 十九.图像分割之基于K-Means聚类的区域分割》,作者: eastmount。
本篇文章主要讲解基于理论的图像分割方法,通过K-Means聚类算法实现图像分割或颜色分层处理。基础性文章,希望对你有所帮助。

  • 一.K-Means原理
  • 二.K-Means聚类分割灰度图像
  • 三.K-Means聚类对比分割彩色图像
注意 :该部分知识均为杨秀璋查阅资料撰写,未经授权禁止转载,谢谢!!如果有问题随时私聊我,只望您能从这个系列中学到知识,一起加油喔~
该系列在github所有源代码:https://github.com/eastmountyxz/ImageProcessing-Python
一.K-Means聚类原理

第一部分知识主要参考自己的新书《Python网络数据爬取及分析从入门到精通(分析篇)》和之前的博客 [Python数据挖掘课程] 二.Kmeans聚类数据分析
K-Means聚类是最常用的聚类算法,最初起源于信号处理,其目标是将数据点划分为K个类簇,找到每个簇的中心并使其度量最小化。该算法的最大优点是简单、便于理解,运算速度较快,缺点是只能应用于连续型数据,并且要在聚类前指定聚集的类簇数。
下面是K-Means聚类算法的分析流程,步骤如下:

  • 第一步,确定K值,即将数据集聚集成K个类簇或小组。
  • 第二步,从数据集中随机选择K个数据点作为质心(Centroid)或数据中心。
  • 第三步,分别计算每个点到每个质心之间的距离,并将每个点划分到离最近质心的小组,跟定了那个质心。
  • 第四步,当每个质心都聚集了一些点后,重新定义算法选出新的质心。
  • 第五步,比较新的质心和老的质心,如果新质心和老质心之间的距离小于某一个阈值,则表示重新计算的质心位置变化不大,收敛稳定,则认为聚类已经达到了期望的结果,算法终止。
  • 第六步,如果新的质心和老的质心变化很大,即距离大于阈值,则继续迭代执行第三步到第五步,直到算法终止。
下图是对身高和体重进行聚类的算法,将数据集的人群聚集成三类。
二.K-Means聚类分割灰度图像

在图像处理中,通过K-Means聚类算法可以实现图像分割、图像聚类、图像识别等操作,本小节主要用来进行图像颜色分割。假设存在一张100×100像素的灰度图像,它由10000个RGB灰度级组成,我们通过K-Means可以将这些像素点聚类成K个簇,然后使用每个簇内的质心点来替换簇内所有的像素点,这样就能实现在不改变分辨率的情况下量化压缩图像颜色,实现图像颜色层级分割。
在OpenCV中,Kmeans()函数原型如下所示:
retval, bestLabels, centers = kmeans(data, K, bestLabels, criteria, attempts, flags[, centers])

  • data表示聚类数据,最好是np.flloat32类型的N维点集
  • K表示聚类类簇数
  • bestLabels表示输出的整数数组,用于存储每个样本的聚类标签索引
  • criteria表示算法终止条件,即最大迭代次数或所需精度。在某些迭代中,一旦每个簇中心的移动小于criteria.epsilon,算法就会停止
  • attempts表示重复试验kmeans算法的次数,算法返回产生最佳紧凑性的标签
  • flags表示初始中心的选择,两种方法是cv2.KMEANS_PP_CENTERS ;和cv2.KMEANS_RANDOM_CENTERS
  • centers表示集群中心的输出矩阵,每个集群中心为一行数据
下面使用该方法对灰度图像颜色进行分割处理,需要注意,在进行K-Means聚类操作之前,需要将RGB像素点转换为一维的数组,再将各形式的颜色聚集在一起,形成最终的颜色分割。
  1. # coding: utf-8
  2. import cv2
  3. import numpy as np
  4. import matplotlib.pyplot as plt
  5. #读取原始图像灰度颜色
  6. img = cv2.imread('scenery.png', 0)
  7. print img.shape
  8. #获取图像高度、宽度
  9. rows, cols = img.shape[:]
  10. #图像二维像素转换为一维
  11. data = img.reshape((rows * cols, 1))
  12. data = np.float32(data)
  13. #定义中心 (type,max_iter,epsilon)
  14. criteria = (cv2.TERM_CRITERIA_EPS +
  15.             cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
  16. #设置标签
  17. flags = cv2.KMEANS_RANDOM_CENTERS
  18. #K-Means聚类 聚集成4类
  19. compactness, labels, centers = cv2.kmeans(data, 4, None, criteria, 10, flags)
  20. #生成最终图像
  21. dst = labels.reshape((img.shape[0], img.shape[1]))
  22. #用来正常显示中文标签
  23. plt.rcParams['font.sans-serif']=['SimHei']
  24. #显示图像
  25. titles = [u'原始图像', u'聚类图像']
  26. images = [img, dst]
  27. for i in xrange(2):
  28. plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray'),
  29. plt.title(titles[i])
  30. plt.xticks([]),plt.yticks([])
  31. plt.show()
复制代码
输出结果如图所示,左边为灰度图像,右边为K-Means聚类后的图像,它将灰度级聚集成四个层级,相似的颜色或区域聚集在一起。
三.K-Means聚类对比分割彩色图像

下面代码是对彩色图像进行颜色分割处理,它将彩色图像聚集成2类、4类和64类。
  1. # coding: utf-8
  2. import cv2
  3. import numpy as np
  4. import matplotlib.pyplot as plt
  5. #读取原始图像
  6. img = cv2.imread('scenery.png')
  7. print img.shape
  8. #图像二维像素转换为一维
  9. data = img.reshape((-1,3))
  10. data = np.float32(data)
  11. #定义中心 (type,max_iter,epsilon)
  12. criteria = (cv2.TERM_CRITERIA_EPS +
  13.             cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
  14. #设置标签
  15. flags = cv2.KMEANS_RANDOM_CENTERS
  16. #K-Means聚类 聚集成2类
  17. compactness, labels2, centers2 = cv2.kmeans(data, 2, None, criteria, 10, flags)
  18. #K-Means聚类 聚集成4类
  19. compactness, labels4, centers4 = cv2.kmeans(data, 4, None, criteria, 10, flags)
  20. #K-Means聚类 聚集成8类
  21. compactness, labels8, centers8 = cv2.kmeans(data, 8, None, criteria, 10, flags)
  22. #K-Means聚类 聚集成16类
  23. compactness, labels16, centers16 = cv2.kmeans(data, 16, None, criteria, 10, flags)
  24. #K-Means聚类 聚集成64类
  25. compactness, labels64, centers64 = cv2.kmeans(data, 64, None, criteria, 10, flags)
  26. #图像转换回uint8二维类型
  27. centers2 = np.uint8(centers2)
  28. res = centers2[labels2.flatten()]
  29. dst2 = res.reshape((img.shape))
  30. centers4 = np.uint8(centers4)
  31. res = centers4[labels4.flatten()]
  32. dst4 = res.reshape((img.shape))
  33. centers8 = np.uint8(centers8)
  34. res = centers8[labels8.flatten()]
  35. dst8 = res.reshape((img.shape))
  36. centers16 = np.uint8(centers16)
  37. res = centers16[labels16.flatten()]
  38. dst16 = res.reshape((img.shape))
  39. centers64 = np.uint8(centers64)
  40. res = centers64[labels64.flatten()]
  41. dst64 = res.reshape((img.shape))
  42. #图像转换为RGB显示
  43. img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
  44. dst2 = cv2.cvtColor(dst2, cv2.COLOR_BGR2RGB)
  45. dst4 = cv2.cvtColor(dst4, cv2.COLOR_BGR2RGB)
  46. dst8 = cv2.cvtColor(dst8, cv2.COLOR_BGR2RGB)
  47. dst16 = cv2.cvtColor(dst16, cv2.COLOR_BGR2RGB)
  48. dst64 = cv2.cvtColor(dst64, cv2.COLOR_BGR2RGB)
  49. #用来正常显示中文标签
  50. plt.rcParams['font.sans-serif']=['SimHei']
  51. #显示图像
  52. titles = [u'原始图像', u'聚类图像 K=2', u'聚类图像 K=4',
  53. u'聚类图像 K=8', u'聚类图像 K=16', u'聚类图像 K=64']
  54. images = [img, dst2, dst4, dst8, dst16, dst64]
  55. for i in xrange(6):
  56. plt.subplot(2,3,i+1), plt.imshow(images[i], 'gray'),
  57. plt.title(titles[i])
  58. plt.xticks([]),plt.yticks([])
  59. plt.show()
复制代码
输出结果如下图所示,当K=2颜色聚集成两种,当K=64颜色聚集成64种。
 
点击关注,第一时间了解华为云新鲜技术~

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!
回复

使用道具 举报

0 个回复

倒序浏览

快速回复

您需要登录后才可以回帖 登录 or 立即注册

本版积分规则

自由的羽毛

金牌会员
这个人很懒什么都没写!

标签云

快速回复 返回顶部 返回列表