同程和艺龙两家公司融合后,全平台所有体系的会员总量是十多亿。在这么大的数据体量下,业务线的查询维度也比较复杂。
有的业务线基于手机号,有的基于微信 unionid,也有的基于艺龙卡号等查询会员信息。
这么大的数据量,又有这么多的查询维度,基于此,我们选择 ES 用来存储统一会员关系。ES 集群在整个会员系统架构中非常重要,那么如何保证 ES 的高可用呢?
首先我们知道,ES 集群本身就是保证高可用的,如下图所示:
当 ES 集群有一个节点宕机了,会将其他节点对应的 Replica Shard 升级为 Primary Shard,继续提供服务。
但即使是这样,还远远不够。例如 ES 集群都部署在机房 A,现在机房 A 突然断电了,怎么办?
例如服务器硬件故障,ES 集群大部分机器宕机了,怎么办?或者突然有个非常热门的抢购秒杀活动,带来了一波非常大的流量,直接把 ES 集群打死了,怎么办?面对这些情况,让运维兄弟冲到机房去解决?
这个非常不现实,因为会员系统直接影响全公司所有业务线的下单主流程,故障恢复的时间必须非常短,如果需要运维兄弟人工介入,那这个时间就太长了,是绝对不能容忍的。
那 ES 的高可用如何做呢?我们的方案是 ES 双中心主备集群架构。
我们有两个机房,分别是机房 A 和机房 B。我们把 ES 主集群部署在机房 A,把 ES 备集群部署在机房 B。会员系统的读写都在 ES 主集群,通过 MQ 将数据同步到 ES 备集群。
此时,如果 ES 主集群崩了,通过统一配置,将会员系统的读写切到机房 B 的 ES 备集群上,这样即使 ES 主集群挂了,也能在很短的时间内实现故障转移,确保会员系统的稳定运行。
最后,等 ES 主集群故障恢复后,打开开关,将故障期间的数据同步到 ES 主集群,等数据同步一致后,再将会员系统的读写切到 ES 主集群。
ES 流量隔离三集群架构
双中心 ES 主备集群做到这一步,感觉应该没啥大问题了,但去年的一次恐怖流量冲击让我们改变了想法。
那是一个节假日,某个业务上线了一个营销活动,在用户的一次请求中,循环 10 多次调用了会员系统,导致会员系统的 tps 暴涨,差点把 ES 集群打爆。
这件事让我们后怕不已,它让我们意识到,一定要对调用方进行优先级分类,实施更精细的隔离、熔断、降级、限流策略。
首先,我们梳理了所有调用方,分出两大类请求类型:
第一类是跟用户的下单主流程密切相关的请求,这类请求非常重要,应该高优先级保障。
第二类是营销活动相关的,这类请求有个特点,他们的请求量很大,tps 很高,但不影响下单主流程。
基于此,我们又构建了一个 ES 集群,专门用来应对高 tps 的营销秒杀类请求,这样就跟 ES 主集群隔离开来,不会因为某个营销活动的流量冲击而影响用户的下单主流程。
如下图所示:
ES 集群深度优化提升
讲完了 ES 的双中心主备集群高可用架构,接下来我们深入讲解一下 ES 主集群的优化工作。
有一段时间,我们特别痛苦,就是每到饭点,ES 集群就开始报警,搞得每次吃饭都心慌慌的,生怕 ES 集群一个扛不住,就全公司炸锅了。
那为什么一到饭点就报警呢?因为流量比较大, 导致 ES 线程数飙高,cpu 直往上窜,查询耗时增加,并传导给所有调用方,导致更大范围的延时。那么如何解决这个问题呢?
通过深入 ES 集群,我们发现了以下几个问题:
ES 负载不合理,热点问题严重。ES 主集群一共有几十个节点,有的节点上部署的 shard 数偏多,有的节点部署的 shard 数很少,导致某些服务器的负载很高,每到流量高峰期,就经常预警。
ES 线程池的大小设置得太高,导致 cpu 飙高。我们知道,设置 ES 的 threadpool,一般将线程数设置为服务器的 cpu 核数,即使 ES 的查询压力很大,需要增加线程数,那最好也不要超过“cpu core * 3 / 2 + 1”。如果设置的线程数过多,会导致 cpu 在多个线程上下文之间频繁来回切换,浪费大量 cpu 资源。
数据的迁移要做到无缝迁移,不仅是存量 10 多亿数据的迁移,实时产生的数据也要无缝同步到 MySQL。另外,除了要保障数据同步的实时性,还要保证数据的正确性,以及 SqlServer 和 MySQL 数据的一致性。
基于以上痛点,我们设计了“全量同步、增量同步、实时流量灰度切换”的技术方案。
首先,为了保证数据的无缝切换,采用实时双写的方案。因为业务逻辑的复杂,以及 SqlServer 和 MySQL 的技术差异性,在双写 MySQL 的过程中,不一定会写成功,而一旦写失败,就会导致 SqlServer 和 MySQL 的数据不一致,这是绝不允许的。
所以,我们采取的策略是,在试运行期间,主写 SqlServer,然后通过线程池异步写 MySQL,如果写失败了,重试三次,如果依然失败,则记日志,然后人工排查原因,解决后,继续双写,直到运行一段时间,没有双写失败的情况。
通过上述策略,可以确保在绝大部分情况下,双写操作的正确性和稳定性,即使在试运行期间出现了 SqlServer 和 MySQL 的数据不一致的情况,也可以基于 SqlServer 再次全量构建出 MySQL 的数据。
因为我们在设计双写策略时,会确保 SqlServer 一定能写成功,也就是说,SqlServer 中的数据是全量最完整、最正确的。
如下图所示:
讲完了双写,接下来我们看一下“读数据”如何灰度。整体思路是,通过 A/B 平台逐步灰度流量,刚开始 100% 的流量读取 SqlServer 数据库,然后逐步切流量读取 MySQL 数据库,先 1%,如果没有问题,再逐步放流量,最终 100% 的流量都走 MySQL数据库。
在逐步灰度流量的过程中,需要有验证机制,只有验证没问题了,才能进一步放大流量。
那么这个验证机制如何实施呢?方案是,在一次查询请求里,通过异步线程,比较 SqlServer 和 MySQL 的查询结果是否一致,如果不一致,记日志,再人工检查不一致的原因,直到彻底解决不一致的问题后,再逐步灰度流量。
如下图所示:
所以,整体的实施流程如下:
首先,在一个夜黑风高的深夜,流量最小的时候,完成 SqlServer 到 MySQL 数据库的全量数据同步。
接着,开启双写,此时,如果有用户注册,就会实时双写到两个数据库。那么,在全量同步和实时双写开启之间,两个数据库还相差这段时间的数据,所以需要再次增量同步,把数据补充完整,以防数据的不一致。
剩下的时间,就是各种日志监控,看双写是否有问题,看数据比对是否一致等等。
这段时间是耗时最长的,也是最容易发生问题的,如果有的问题比较严重,导致数据不一致了,就需要从头再来,再次基于 SqlServer 全量构建 MySQL 数据库,然后重新灰度流量。
直到最后,100% 的流量全部灰度到 MySQL,此时就大功告成了,下线灰度逻辑,所有读写都切到 MySQL 集群。
MySQL 和 ES 主备集群方案
做到这一步,感觉会员主库应该没问题了,可 dal 组件的一次严重故障改变了我们的想法。
那次故障很恐怖,公司很多应用连接不上数据库了,创单量直线往下掉,这让我们意识到,即使数据库是好的,但 dal 组件异常,依然能让会员系统挂掉。
所以,我们再次异构了会员主库的数据源,双写数据到 ES,如下所示:
如果 dal 组件故障或 MySQL 数据库挂了,可以把读写切到 ES,等 MySQL 恢复了,再把数据同步到 MySQL,最后把读写再切回到 MySQL 数据库。
如下图所示:
异常会员关系治理