这篇博客参考了一些文章,例如:教程:利用LLaMA_Factory微调llama3:8b大模型_llama3模型微调保存-CSDN博客
也可以参考Llama Factory的Readme:GitHub - hiyouga/LLaMA-Factory: Unify Efficient Fine-Tuning of 100+ LLMsUnify Efficient Fine-Tuning of 100+ LLMs. Contribute to hiyouga/LLaMA-Factory development by creating an account on GitHub.https://github.com/hiyouga/LLaMA-Factory?tab=readme-ov-file#installation首先将Llama Factory clone到本地:GitHub - hiyouga/LLaMA-Factory: Unify Efficient Fine-Tuning of 100+ LLMs
其次创建一个conda环境:
- conda create -n llama_factory python=3.10
复制代码 激活环境后首先安装pytorch,具体参考这个页面:Start Locally | PyTorch,例如:
- conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
复制代码 而后进入到LLaMA-Factory文件夹,参考其Readme,运行:
- pip install -e .[torch,metrics]
复制代码 同时,按照其Readme,在Windows系统上还需要运行:
- pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
复制代码 具体原因我就不展开讲了。然后依次运行:
- Set CUDA_VISIBLE_DEVICES=0
- Set GRADIO_SHARE=1
- llamafactory-cli webui
复制代码 就可以看到其webui了。不过这时候还没有模型参数文件,对于国内用户而言,可以在这里https://modelscope.cn/organization/LLM-Researchhttps://modelscope.cn/organization/LLM-Research
进行下载,例如可以下载Llama3中文版本(如果没有git lfs可以用前两个命令安装):
- conda install git-lfs
- git-lfs install
- git lfs clone https://www.modelscope.cn/LLM-Research/Llama3-8B-Chinese-Chat.git
复制代码 下载好之后,可以构造自己的微调数据集,具体而言,按照这里的介绍:
https://github.com/hiyouga/LLaMA-Factory/tree/main/data
Llama Factory支持alpaca and sharegpt的格式,前者类似于这种格式:
- [
- {
- "instruction": "human instruction (required)",
- "input": "human input (optional)",
- "output": "model response (required)",
- "system": "system prompt (optional)",
- "history": [
- ["human instruction in the first round (optional)", "model response in the first round (optional)"],
- ["human instruction in the second round (optional)", "model response in the second round (optional)"]
- ]
- }
- ]
复制代码 我们构造数据集的时候,最简单的方法就是只构造instruction和output。把生成的json文件放到LLaMA-Factory\data目录下,然后打开dataset_info.json文件,增加这个文件名记录即可,例如我这里增加:
"private_train": {
"file_name": "private_train.json"
},
选择自己的私有数据集,可以预览一下,然后就可以开始训练了。
训练完成后切换到Export,然后在上面的“微调方法”——“检查点路径”中选择刚才存储的目录Train_2024_xxxx之类,然后指定导出文件的目录,然后就可以导出了。
导出之后我们可以加载微调之后的模型并测试了。当然,如果训练数据集比较小的话,测试的效果也不会太好。如果大家只是想对微调效果和特定问题进行展示,可以训练模型到过拟合,呵呵呵。
就记录这么多。
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |