题意:本地运行 llama-index、uncharted 以及 llama2:7b 来生成索引
题目配景:
I wanted to use llama-index locally with ollama and llama3:8b to index utf-8 json file. I dont have a gpu. I use uncharted to convert docs into json. Now If it is not possible to use llama-index locally without GPU I wanted to use hugging face inference API. But I am not certain if it is free. Can anyone suggest a way?
This is my python code:
- from llama_index.core import Document, SimpleDirectoryReader, VectorStoreIndex
- from llama_index.llms.ollama import Ollama
- import json
- from llama_index.core import Settings
-
-
- # Convert the JSON document into LlamaIndex Document objects
- with open('data/UBER_2019.json', 'r',encoding='utf-8') as f:
- json_doc = json.load(f)
- documents = [Document(text=str(doc)) for doc in json_doc]
-
- # Initialize Ollama with the local LLM
- ollama_llm = Ollama(model="llama3:8b")
- Settings.llm = ollama_llm
-
- # Create the index using the local LLM
- index = VectorStoreIndex.from_documents(documents)#, llm=ollama_llm)
复制代码 But i keep getting error that there is no OPENAI key. I wanted to use llama2 so that i dont require OPENAI key
Can anyone suggest what i am doing wrong? Also can i use huggingfaceinference API to do indexing of a local json file for free?
题目办理:
You are not setting the embedding model, so I think Llama Index is defaulting to OpenAI.
You must specify an embedding model that does not require an API key.
You can use Ollama:
- from llama_index.embeddings.ollama import OllamaEmbedding
- # Using Nomic
- Settings.embed_model = OllamaEmbedding(model_name="nomic-embed-text")
- # Using Llama
- Settings.embed_model = OllamaEmbedding(model_name="llama2")
复制代码 But there are many options in the documentation like this, this, this
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |