Google Earth Engine(GEE)——Kmeans聚类快速进行土地分类(双for循环快速 ...

王柳  金牌会员 | 2022-6-25 02:43:05 | 显示全部楼层 | 阅读模式
打印 上一主题 下一主题

主题 798|帖子 798|积分 2394

k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,其步骤是,预将数据分为K组,则随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算。这个过程将不断重复直到满足某个终止条件。终止条件可以是没有(或最小数目)对象被重新分配给不同的聚类,没有(或最小数目)聚类中心再发生变化,误差平方和局部最小。
我们本次是研究通过不同的参数调整来实验我们的研究对象,当然可以叠加多层for循环查看结果,这次我们分别对分类的个数各所选择的初始化的分类方法进行for循环,剩下的所有参数都采用默认状态进行。
ee.Clusterer.wekaKMeans(nClusters, init, canopies, maxCandidates, periodicPruning, minDensity, t1, t2, distanceFunction, maxIterations, p

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!
回复

使用道具 举报

0 个回复

正序浏览

快速回复

您需要登录后才可以回帖 登录 or 立即注册

本版积分规则

王柳

金牌会员
这个人很懒什么都没写!

标签云

快速回复 返回顶部 返回列表