前言
回归分析就是用于预测输入变量(自变量)和输出变量(因变量)之间的关系,特别当输入的值发生变化时,输出变量值也发生改变!回归简单来说就是对数据进行拟合。线性回归就是通过线性的函数对数据进行拟合。机器学习并不能实现预言,只能实现简单的预测。我们这次对房价关于其他因素的关系。
波士顿房价预测
下载相关数据集
- 数据集是506行14列的波士顿房价数据集,数据集是开源的。
- wget.download(url='https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data',out= 'housing.data')
- wget.download(url='https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.names',out='housing.names')
- wget.download(url='https://archive.ics.uci.edu/ml/machine-learning-databases/housing/Index',out='Index')
复制代码 对数据集进行处理
- feature_names = ['CRIM','ZN','INDUS','CHAS','NOX','RM','AGE','DIS','RAD','TAX','PTRATIO','B','LSTAT','MEDV']
- feature_num = len(feature_names)
- print(feature_num)
- # 把7084 变为506*14
- housing_data = housing_data.reshape(housing_data.shape[0]//feature_num,feature_num)
- print(housing_data.shape[0])
- # 打印第一行数据
- print(housing_data[:1])
- ## 归一化
- feature_max = housing_data.max(axis=0)
- feature_min = housing_data.min(axis=0)
- feature_avg = housing_data.sum(axis=0)/housing_data.shape[0]
复制代码 模型定义
- ## 实例化模型
- def Model():
- model = linear_model.LinearRegression()
- return model
- # 拟合模型
- def train(model,x,y):
- model.fit(x,y)
复制代码 可视化模型效果
- def draw_infer_result(groud_truths,infer_results):
- title = 'Boston'
- plt.title(title,fontsize=24)
- x = np.arange(1,40)
- y = x
- plt.plot(x,y)
- plt.xlabel('groud_truth')
- plt.ylabel('infer_results')
- plt.scatter(groud_truths,infer_results,edgecolors='green',label='training cost')
- plt.grid()
- plt.show()
复制代码 整体代码
- ## 基于线性回归实现房价预测## 拟合函数模型## 梯度下降方法## 开源房价策略数据集import wgetimport numpy as npimport osimport matplotlibimport matplotlib.pyplot as pltimport pandas as pdfrom sklearn import linear_model## 下载之后注释掉'''wget.download(url='https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data',out= 'housing.data')
- wget.download(url='https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.names',out='housing.names')
- wget.download(url='https://archive.ics.uci.edu/ml/machine-learning-databases/housing/Index',out='Index')'''''' 1. CRIM per capita crime rate by town 2. ZN proportion of residential land zoned for lots over 25,000 sq.ft. 3. INDUS proportion of non-retail business acres per town 4. CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) 5. NOX nitric oxides concentration (parts per 10 million) 6. RM average number of rooms per dwelling 7. AGE proportion of owner-occupied units built prior to 1940 8. DIS weighted distances to five Boston employment centres 9. RAD index of accessibility to radial highways 10. TAX full-value property-tax rate per $10,000 11. PTRATIO pupil-teacher ratio by town 12. B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town 13. LSTAT % lower status of the population 14. MEDV Median value of owner-occupied homes in $1000's'''## 数据加载datafile = './housing.data'housing_data = np.fromfile(datafile,sep=' ')print(housing_data.shape)feature_names = ['CRIM','ZN','INDUS','CHAS','NOX','RM','AGE','DIS','RAD','TAX','PTRATIO','B','LSTAT','MEDV']
- feature_num = len(feature_names)
- print(feature_num)
- # 把7084 变为506*14
- housing_data = housing_data.reshape(housing_data.shape[0]//feature_num,feature_num)
- print(housing_data.shape[0])
- # 打印第一行数据
- print(housing_data[:1])
- ## 归一化
- feature_max = housing_data.max(axis=0)
- feature_min = housing_data.min(axis=0)
- feature_avg = housing_data.sum(axis=0)/housing_data.shape[0]def feature_norm(input): f_size = input.shape output_features = np.zeros(f_size,np.float32) for batch_id in range(f_size[0]): for index in range(13): output_features[batch_id][index] = (input[batch_id][index]-feature_avg[index])/(feature_max[index]-feature_min[index]) return output_featureshousing_features = feature_norm(housing_data[:,:13])housing_data = np.c_[housing_features,housing_data[:,-1]].astype(np.float32)## 划分数据集 8:2ratio =0.8offset = int(housing_data.shape[0]*ratio)train_data = housing_data[:offset]test_data = housing_data[offset:]print(train_data[:2])## 模型配置## 线性回归## 实例化模型
- def Model():
- model = linear_model.LinearRegression()
- return model
- # 拟合模型
- def train(model,x,y):
- model.fit(x,y)## 模型训练X, y = train_data[:,:13], train_data[:,-1:]model = Model()train(model,X,y)x_test, y_test = test_data[:,:13], test_data[:,-1:]prefict = model.predict(x_test)## 模型评估infer_results = []groud_truths = []def draw_infer_result(groud_truths,infer_results):
- title = 'Boston'
- plt.title(title,fontsize=24)
- x = np.arange(1,40)
- y = x
- plt.plot(x,y)
- plt.xlabel('groud_truth')
- plt.ylabel('infer_results')
- plt.scatter(groud_truths,infer_results,edgecolors='green',label='training cost')
- plt.grid()
- plt.show()draw_infer_result(y_test,prefict)
复制代码 效果展示

总结
线性回归预测还是比较简单的,可以简单理解为函数拟合,数据集是使用的开源的波士顿房价的数据集,算法也是打包好的包,方便我们引用。
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |