矩阵1-范数与二重求和的求和可交换
1、矩阵1-范数
A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] A = \begin{bmatrix} a_{11} &a_{12} &\cdots &a_{1n} \\ a_{21} &a_{22} &\cdots &a_{2n} \\ \vdots &\vdots &\ddots &\vdots \\ a_{n1} &a_{n2} &\cdots &a_{nn} \\ \end{bmatrix} A= a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann
∣ ∣ A ∣ ∣ m 1 = ∑ i = 1 n ( ∑ j = 1 n ∣ a i j ∣ ) = ∑ j = 1 n ( ∑ i = 1 n ∣ a i j ∣ ) ||A||_{m1} = \sum_{i=1}^{n} (\sum_{j=1}^{n}|a_{ij}|) = \sum_{j=1}^{n} (\sum_{i=1}^{n}|a_{ij}|) ∣∣A∣∣m1=i=1∑n(j=1∑n∣aij∣)=j=1∑n(i=1∑n∣aij∣)
2、二重求和的求和符号可交换
对于矩阵1-范数而言,求和符号交换前后是按行求和与按列求和的区别。本质上都是把每个元素取模并相加。
再讨论一个例子,自相干函数 r ( m ) r(m) r(m)。
对于一个广义平稳离散时间随机过程 u ( n ) u(n) u(n)而言,其自相干函数定义为:
r ( m ) = E { u ( n ) u ∗ ( n − m ) } = ∫ ∫ u ( n ) u ∗ ( n − m ) p ( u n , u n − m ; n , n − m ) d u n d u n − m r(m) = E\{u(n)u^*(n-m)\} = \int\int u(n)u^*(n-m)p(u_n,u_{n-m};n,n-m)\mathrm{d}u_n \mathrm{d}u_{n-m} r(m)=E{u(n)u∗(n−m)}=∫∫u(n)u∗(n−m)p(un,un−m;n,n−m)dundun−m
此中 E E E是求期望, p ( ) p() p()表示联合概率密度函数。积分范围是 u ( n ) u(n) u(n)的值域,作为离散时间信号,值域不一定是离散的,值域经过量化后称为“数字信号”。
假设观测了N个采样点,那么可以得到 u ( n ) u(n) u(n)的离散傅立叶变换DFT:
U ( k ) = ∑ n = 0 N − 1 u ( n ) e − j 2 π N k n U(k) = \sum_{n=0}^{N-1} u(n) e^{-j\frac{2\pi}{N}kn} U(k)=n=0∑N−1u(n)e−jN2πkn
在信号处置惩罚领域,通常会从0开始编号,也比较符合实际,电路采样一般从一个时钟上升边沿开始算起。
当我们考虑 U ( k ) U(k) U(k)的自相干函数的时间:
r U ( m ) = E { U ( k ) U ∗ ( k − m ) } = E { ∑ n = 0 N − 1 u ( n ) e − j 2 π N k n ∑ l = 0 N − 1 u ( l ) e j 2 π N ( k − m ) l } r_U(m) = E\{U(k)U^*(k-m)\} = E\{\sum_{n=0}^{N-1} u(n) e^{-j\frac{2\pi}{N}kn}\sum_{l=0}^{N-1} u(l) e^{j\frac{2\pi}{N}(k-m)l}\} rU(m)=E{U(k)U∗(k−m)}=E{n=0∑N−1u(n)e−jN2πknl=0∑N−1u(l)ejN2π(k−m)l}
留意到这里出现了两个和相乘的形式,那么根据多项式乘法规则,应该得到 N 2 N^2 N2项之和。
这个时间就可以写成:
r U ( m ) = E { ∑ n = 0 N − 1 ∑ l = 0 N − 1 u ( n ) u ( l ) e − j 2 π N k n e j 2 π N ( k − m ) l } r_U(m) =E\{\sum_{n=0}^{N-1} \sum_{l=0}^{N-1} u(n)u(l) e^{-j\frac{2\pi}{N}kn} e^{j\frac{2\pi}{N}(k-m)l}\} rU(m)=E{n=0∑N−1l=0∑N−1u(n)u(l)e−jN2πknejN2π(k−m)l}
抽象一下:
考虑两个序列 a = ( a 1 , a 2 , ⋯ , a n ) T a = (a_1,a_2,\cdots,a_n)^T a=(a1,a2,⋯,an)T和 b = ( b 1 , b 2 , ⋯ , b n ) T b=(b_1,b_2,\cdots,b_n)^T b=(b1,b2,⋯,bn)T的1-范数相乘,
∣ ∣ a ∣ ∣ 1 ⋅ ∣ ∣ b ∣ ∣ 1 = ∑ i = 1 n ∣ a i ∣ ∑ j = 1 n ∣ b j ∣ = ∑ i = 1 n ∑ j = 1 n ∣ a i ∣ ∣ b j ∣ = ∑ i = 1 n ∑ j = 1 n ∣ a i b j ∣ ||a||_1\cdot ||b||_1 = \sum_{i=1}^n|a_i| \sum_{j=1}^n |b_j| = \sum_{i=1}^n \sum_{j=1}^n |a_i||b_j| = \sum_{i=1}^n \sum_{j=1}^n |a_ib_j| ∣∣a∣∣1⋅∣∣b∣∣1=i=1∑n∣ai∣j=1∑n∣bj∣=i=1∑nj=1∑n∣ai∣∣bj∣=i=1∑nj=1∑n∣aibj∣
实际上可以表示成一个矩阵:
[ a 1 b 1 a 1 b 2 ⋯ a 1 b n a 2 b 1 a 2 b 2 ⋯ a 2 b 2 ⋮ ⋮ ⋱ ⋮ a n b 1 a n b 2 ⋯ a n b n ] \begin{bmatrix} a_1 b_1 &a_1 b_2 &\cdots &a_1 b_n \\ a_2 b_1 &a_2 b_2 &\cdots &a_2 b_2 \\ \vdots &\vdots &\ddots &\vdots \\ a_n b_1 &a_n b_2 &\cdots &a_n b_n \\ \end{bmatrix} a1b1a2b1⋮anb1a1b2a2b2⋮anb2⋯⋯⋱⋯a1bna2b2⋮anbn
再考虑这个问题的反面,即有没有二重求和是不能交换求温次序的呢?
对于数值函数的二重积分,二重积分的值与积分序次无关要求积分地区既可表示成X-型地区,又可表示成Y-型地区。
对于二重求和而言,相当于对于一个矩形地区,变积分为求和。以是对于大多数情况而言,二重求和都是可以交换求温次序的。(没有说得很绝对,因为这还仅仅是我自己的考虑,没有去考证)
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |