云盘算之大数据(上)

打印 上一主题 下一主题

主题 907|帖子 907|积分 2721

目次
一、Elasticsearch
1.1 产品组件
1.1.1 X-Pack
1.1.2 Beats数据采集中央
1.1.3 Logstash
1.1.4 Kibana
1.2 架构特性
1.2.1 性能
1.2.2 安全性
1.2.3 可用性
1.2.4 可扩展性
1.2.5 可维护性
1.2.6 国际化
1.3 综合检索分析
1.4 全观测
1.5 大数据检索加速
1.6 最佳实践 - 多模态搜刮
1.6.1 需求分析
1.6.2 解决方案
1.7 最佳实践 - 全观测
1.7.1 需求分析
1.7.2 解决方案
1.8 最佳实践 - 数据检索加速
1.8.1 需求分析
1.8.2 解决方案
二、DataWorks
2.1 产品介绍
2.2 产品功能
2.2.1 数据建模
2.2.2 数据集成离线(批量)同步
2.2.3 数据集成及时同步
2.2.4 数据集玉成增量同步任务
2.2.5 数据开辟
2.2.6 数据分析
2.2.7 数据治理
2.2.8 数据服务
2.3 最佳实践-调度参数在数据集成中的典范应用场景
2.3.1 场景一:同步增量数据
2.3.2 场景二:同步汗青数据
2.4 常见问题
2.4.1 什么是调度依靠?
2.4.2 哪些场景不支持设置调度依靠?
2.4.3 数据源网络联通性测试失败怎么办?
2.4.4 提交节点报错:当前节点依靠的父节点输出名不存在
三、MaxCompute
3.1 产品架构
3.2 核心概念和层次布局
3.3 功能特性
3.3.1 全托管Serverless在线服务
3.3.2 弹性本领与扩展性
3.3.3 统一丰富的盘算和存储本领
3.3.4 数据建模、开辟、治理本领
3.3.5 集成AI本领
3.3.6 深度集成Spark引擎
3.3.7 湖仓一体
3.3.8 离线及时一体
3.3.9 支持流式写入和近及时分析
3.3.10 连续的SaaS化数据保护
3.4 MaxCompute SQL与标准SQL的根本区别
3.5 最佳实践-数据模型架构规范
3.5.1 数据层次分别
3.5.2 数据分类架构
3.6 最佳实践 –小文件处置惩罚
3.6.1 小文件界说
3.6.2 小文件过多会带来的影响
3.6.3 会产生小文件的场景
3.7 常见问题
3.7.1 使用MaxCompute必要具备什么专业技能?
3.7.2 MaxCompute中的项目(project)发挥什么作用?
3.7.3 MaxCompute的表格范例有几种,分别是什么?
3.7.4 MaxCompute常见错误信息如何理解,怎么定位问题?
总结
1、Elasticsearch
2、DataWorks
3、MaxCompute


一、Elasticsearch

1.1 产品组件

        在阿里云Elastic Stack产品生态下,Elasticsearch作为及时分布式搜刮和分析引擎,Kibana实现灵活的可视化分析,Beats从各个机器和体系采集数据,Logstash采集、转换、优化和输出数据。通过各个组件的结合,阿里云Elasticsearch可被广泛应用于及时日志处置惩罚、全文搜刮和数据分析等领域。
1.1.1 X-Pack

        X-Pack是Elasticsearch的一个商业版扩展包,包罗安全Security、警告 Alerting、监控Monitoring、图形Graph和报告Reporting、机器学习 MachineLearning等多种高级功能。创建阿里云Elasticsearch集群时,体系会默认将X-Pack作为插件集成在Kibana中,为您免费提供授权认证、脚色权限管控、及时监控、可视化报表、机器学习等本领,实现更便捷的Elasticsearch运维管理和应用开辟。
1.1.2 Beats数据采集中央

        Beats是轻量级的数据采集工具,聚集了多种单一用途的数据采集器。它们从成百上千或成千上万台机器和体系向Logstash或Elasticsearch发送数据。
        阿里云Elasticsearch的Beats采集中央支持Filebeat、Metricbeat、Auditbeat和Heartbeat。支持在云服务器ECS(Elastic Compute Service)和容器服务ACK(Alibaba Cloud Container Service for Kubernetes)集群中一键摆设采集器,可视化采集与配置日志文件、网络数据、容器指标等多种范例数据,并集中管理多个采集器。
1.1.3 Logstash

        Logstash作为服务器端的数据处置惩罚管道,通过输入、过滤和输出插件,动态地从多个来源采集数据,并加工和转换任何范例的变乱,最终将数据存储到所选择的位置。
        阿里云提供全托管的Logstash Service,100%兼容开源。支持一键摆设、可视化配置和集中管理数据管道,提供多种插件实现与OSS、MaxCompute等云产品的连通。
1.1.4 Kibana

        Kibana是灵活的数据分析和可视化工具,支持多用户登录。在Kibana中,您可以搜刮和检察Elasticsearch索引中的数据,并进行交互。创建阿里云Elasticsearch集群时,体系会主动摆设独立的Kibana节点,您可以根据业务需求,灵活使用图表、表格、舆图等,呈现多元化的数据分析报表和大盘。
1.2 架构特性

1.2.1 性能



  • 深度定制加强内核引擎,提升读写性能。
  • 提供阿里内核加强版实例。基于盘算存储分离架构,性能更高,成本更低。
1.2.2 安全性



  • 默认在专有网络情况下访问集群。
  • 免费提供X-Pack安全组件。
  • 支持字段级别的权限控制。
  • 支持HTTPS加密传输和数据存储加密。
1.2.3 可用性



  • 支持数据主动备份。
  • 数据和服务可靠性到达99.9%。
  • 通过自研集群限流插件、慢查询隔离保障集群稳固性。
  • 支持多可用区摆设,提供同城多活架构。
1.2.4 可扩展性



  • 综合检索分析场景:支持ECS服务端数据、布局化业务数据如RDS、非布局化离线数据OSS、消息队列Kafka、流盘算Flink等上游数据接入
  • 全观测场景:支持开源ELK组件,包罗Beats采集组件、kibana 可视化、APM数据接入等
1.2.5 可维护性



  • 开箱即用,弹性扩缩,一键灵活调解集群配置;支持自界说插件、分词等;
  • 支持一键升级集群版本。
  • Eyou智能运维:支持多维度二十余个诊断项的健康检测,智能化地诊断并分析异常。
  • 高级监控报警服务:通过Grafana提供丰富的监控项,实现ES集群日志指标分析
1.2.6 国际化



  • 国际站支持包罗新加坡、美国、澳大利亚等17个地区,60个可用区摆设
1.3 综合检索分析

        基于Elasticsearch的企业级综合检索解决方案,提供面向海量数据的信息检索服务,使得生活在移动互联网中的用户能够查询各种各样的布局化和非布局化信息,以 JSON 文档的情势存储数据,每个文档都会在一组键和它们对应的值之间创建接洽,以实现综合检索本领。实用场景包罗信息检索、舆情分析、保举体系、广告体系等多种对综合检索&召回有需求的场景。
        方案满足综合检索分析场景核心特性必要,包罗能够实现海量数据毫秒级相应,满足数据来源多样且字段不固定,日均亿级别连续写入数据高并发处置惩罚,且要求豪秒级别可见的数据及时性;支持复杂查询检索,灵活支持各类复杂组合、条件和模糊查询,实用于全文检索及分析类业务;支持向量多模态检索,基于向量特性相似度匹配,典范应用于解决以图搜图、智能问答、保举体系-向量召回链路等场景问题。

1.4 全观测

        基于阿里云Elasticsearch全观测引擎日志和时序加强功能,将日志、指标、应用追踪数据汇总于阿里云Elasticsearch平台,让运维、开辟、业务人员对所有的数据从统一视角进行观察分析。
        阿里云全托管ElasticStack,提供日志分析、监控、Tracing一站式本领,针对时序场景优化引擎,包管时许日志监控和分析性能。提供Indexing service自研ES写入托管服务,及跨机房摆设、同城容灾、场景内核优化提升稳固性;采取冷热数据分离存储方式,及自研存储引擎Openstore优化存储压缩算法,降低数据存储成本,以及采取时序加强功能TimeStream,提升时序场景读写性能并降低时序数据管理成本;基于分布式架构,以及灵活开放的RestAPI和Plugin框架,支持各种扩展本领。 

1.5 大数据检索加速

        随着数据量的激增,复杂检索(高纬度聚合、模糊检索等)需求和场景越来越复杂,传统关系型数据库越来越难以匹配业务需求。Elasticsearch借助其强大的检索性能、ms级数据时效性、浩繁异构数据源对接本领完全满足客户多种场景下的诉求。


  • 核心数据库:采取云数据库RDS作为核心业务库,承接业务体系事务性写入,作为核心主库长期化存储关键业务数据;
  • 全增量同步:全量通过标准JDBC(或ODBC)协议获取数据,通过Binlog订阅(或OGG)同步增量;
  • 数据预处置惩罚(option):基于Flink Job(或Spark Streaming Job),针对多表复杂聚合场景进行流式处置惩罚;
  • 索引库:作为承接查询流量的索引库,提供弹性扩缩、NLP分词、全文检索、多维度聚合等高阶功能。 

1.6 最佳实践 - 多模态搜刮

1.6.1 需求分析

        国内某知名连锁餐饮企业,缺少会员、订单、商品等多渠道数据的集中管理、分析处置惩罚本领,盼望全渠道网络门店POS、交易数据、客流数据、用户数据,并准及时分析数据、搭建可视化监控看板及报表联动权限管控体系,实现“数据化管理”,构建新一代的会员管理、运营、社交、营销平台,为上层业务发现问题与机会,辅助商业决策,提升业务成效。
1.6.2 解决方案

使用产品功能:Beats、Elasticsearch、Logstash、Kibana(大概Grafana)
接入方式:公共云产品
使用细节:


  • 使用Filebeat、Metricbeat、Pocketbeat等客户端对存量日志进行订阅并投递给Logstash。
  • 借助Logstash的filter本领对日志做加工(复杂数据加工厂家可以使用Spark/Flink/E-MapReduce)。
  • 加工后的数据通过Logstash的Elasticsearch-output功能导入Elasticsearch中长期化存储。
  • 使用QuickBI和DataV进行业务数据可视化。
  • 基于X-pack权限管理实现差别用户的权限管控。
  • 阿里云Elasticsearch集群弹性平滑伸缩快速相应业务需求。
1.7 最佳实践 - 全观测

1.7.1 需求分析

        某国内某汽车品牌企业IT部门下,有多个内容管理体系(CMS)、分销商经营办公体系(DMO)、运营质量监控体系(QIS)、营销经营分析体系(MMP)、BI体系等内部支撑体系。


  • 统一技术栈,运维场景涉及日志检索、指标监控、性能追踪等;业务方浩繁,海外业务场景快速增长,周边应用微服务、充电桩等车基数据、会员服务/商城/社区等;数据范例多样,包罗日志、时序、应用链路追踪等数据;必要支持统一体系进行数据摄取、存储和查询分析;
  • 预期将来的日志数据规模超PB级(180天),底层技术架构必要兼备低成本存储、快速获取、按需检索和分析的本领;
  • IT业务体系复杂,既要满足连续的业务需求,又要整体上云,必要有快速平迁、对接原有云上/云下的IT体系的产品,并能包管技术架构的灵活、开放性,支持后续的自由拓展。
1.7.2 解决方案

使用产品功能:Beats、EMR、Flink、Elasticsearch、Kibana
接入方式:公共云产品
使用细节:


  • 使用Filebeat、Metricbeat、Pocketbeat等客户端对存量日志进行订阅并投递给Logstash。
  • 借助Logstash的filter本领对日志做加工(复杂数据加工厂家可以使用Flink/E-MapReduce)。
  • 数据通过Logstash的Elasticsearch-output功能导入Elasticsearch中长期化存储,过程中使Elasticsearch全观测引擎的日志加强模块实现写入、存储serverless以及场景化自研功能,进一步降低数据持有成本、提升读写性能。
  • 使用Kibana(大概Grafana)等可视化工具做可视化的监控诉警。

1.8 最佳实践 - 数据检索加速

1.8.1 需求分析

        国内某电商平台信息技术服务供应商有订单处置惩罚、商品管理、分销供应、数据分析、营销打折等业务场景,峰值并发查询压力大,延迟高体验不好,无法到达为用户答应的查询时效性。订单字段复杂,商家用户查询维度多,模糊搜刮意图强,传统数据库方案无法实现满意的查询效果和性能;数据可用性、安全、权限粒度要求高,数据敏感影响巨大。必要高并发准及时搜刮本领支持,查询效果毫秒级返回,同时保障体系高效稳固;必要多种数据布局复杂查询,集群平滑扩缩容,变更对业务0影响,灵活应对流量峰谷。
1.8.2 解决方案

使用产品功能:Elasticsearch、DTS(大概Canal+Logstash)
接入方式:公共云产品
使用细节:


  • 业务库中的存量数据平迁至阿里云,借助DTS的迁移本领or Logstash的数据迁移本领。
  • 借助DTS的订阅本领(大概Canal的订阅本领),将增量数据同步至Elasticsearch中。
  • 借助RestAPI使用ES的强大聚合本领,进行加速检索。
二、DataWorks

2.1 产品介绍

        阿里云DataWorks(也称为大数据开辟套件)是一个集数据集成、开辟、治理、运维于一体的数据中台建设工具。它为企业提供了一个一站式的数据处置惩罚平台,帮助用户轻松地完成数据的采集、存储、处置惩罚、分析和管理等工作。
2.2 产品功能

2.2.1 数据建模

        概论:DataWorks数据建模支持数仓规划计划、制定并沉淀企业数据标准、维度建模、数据指标界说,通过使用DataWorks数据建模,您可以将建模计划产出的维度表、明细表和汇总表物化到盘算引擎中并进一步应用。

2.2.2 数据集成离线(批量)同步

        数据集成主要用于离线(批量)数据同步。离线(批量)的数据通道通过界说数据来源和行止的数据源和数据集,提供一套抽象化的数据抽取插件(Reader)、数据写入插件(Writer),并基于此框架计划一套简化版的中央数据传输格式,从而实现任意布局化、半布局化数据源之间数据传输。

2.2.3 数据集成及时同步

        数据集成的及时同步包罗及时读取、转换和写入三种基础插件,各插件之间通过内部界说的中央数据格式进行交互。一个及时同步任务支持多个转换插件进行数据清洗,并支持多个写入插件实现多路输出功能。同时针对某些场景,支持整库及时同步全增量同步任务,您可以一次性及时同步多个表。

2.2.4 数据集玉成增量同步任务

        实际业务场景下,数据同步通常不能通过一个或多个简朴离线同步大概及时同步任务完成,而是由多个离线同步、及时同步和数据处置惩罚等任务组合完成,这就会导致数据同步场景下的配置复杂度非常高。
        为相识决上述问题,DataWorks提出了面向业务场景的同步任务配置化方案,支持差别数据源的一键同步功能,例如,“一键及时同步至Elasticsearch”、“一键及时同步至Hologres”和“一键及时同步至MaxCompute”功能等,通过此类功能,您只必要进行简朴的配置,就可以完成一个复杂业务场景。
全增量同步任务具有如下优势:


  • 全量数据初始化。
  • 增量数据及时写入。
  • 增量数据和全量数据定时主动归并写入新的全量表分区。
数据集成支持复杂网络情况下的数据源进行异构数据源间的数据同步,包罗但不限于以下情况:


  • 数据源与DataWorks工作空间在同一个阿里云主账号,并且同一个Region。
  • 数据源与DataWorks工作空间不在同一个阿里云主账号。
  • 数据源与DataWorks工作空间不在同一个Region。
  • 数据源在非阿里云情况。
2.2.5 数据开辟



  • 业务流程混合编排:可视化拖拽式多引擎任务混合编排
  • 智能SQL编辑器:AI加持的SQL编辑器,智能提示,SQL算子布局可视化展示,智能SQL诊断
  • 全面的引擎本领封装:支持盘算引擎的任务、表、资源、函数管理,让您无需接触复杂的引擎命令行
  • 自界说节点:提供自界说节点插件化机制,支持您扩展盘算任务范例,自主接入自界说盘算服务 
2.2.6 数据分析



  • 电子表格:支持本地数据上传与在线数据源,兼容大总分Excel函数盘算,支持透视分析和数据侦查
  • SQL查询:支持多种数据源,更便捷更轻量的SQL查询工具
  • SQL Notes:提供SQL Notebook交互情势,支持以文档的情势记载数据分析的过程,包罗分析思路、SQL以及数据效果,并提供数据可视化展示
  • 数据上传:提供快捷的数据编辑上传至MaxCompute的功能特殊实用于小数据量表格编辑上传 
2.2.7 数据治理


2.2.8 数据服务

        数据服务采取Serverless架构,只必要关注API本身的查询逻辑,无需关心运行情况等基础设施,数据服务会为您准备好盘算资源,并支持弹性扩展,零运维成本。

2.3 最佳实践-调度参数在数据集成中的典范应用场景

2.3.1 场景一:同步增量数据

        示例1:将LogHub每十分钟内的增量数据同步至MaxCompute T-1分区。
        平台将根据定时时间,每十分钟天生一个调度实例,目的MaxCompute表分区名称也以调度参数的方式指定,$bizdate表示业务日期,定时任务实行时,任务配置的分区表达式会替换为调度参数所表达的业务日期。

2.3.2 场景二:同步汗青数据

        基于调度参数可根据业务时间将参数主动替换为对应的值这一特性,当您创建任务当天必要将汗青数据进行补齐时,您可使用补数据功能,补数据支持补汗青一段时间的数据大概将来一段时间的数据,调度参数将在任务调度时根据补数据选择的业务时间主动替换为对应的值。

2.4 常见问题

2.4.1 什么是调度依靠?

        调度依靠就是节点间的上卑鄙依靠关系,在DataWorks中,上游任务节点运行完成且运行成功,卑鄙任务节点才会开始运行。挂载依靠关系后,当前节点实行的必要条件之一为当前节点依靠的父节点必要实行成功。
2.4.2 哪些场景不支持设置调度依靠?

由于DataWorks的调度依靠主要保障的是调度节点定时更新的表数据,通过节点调度依靠保障卑鄙取数无误。因此,不是DataWorks平台上调度更新的表,平台无法监控。
当存在非周期性调度生产数据的表,有节点select该类表数据时,需手动删除通过select主动天生的依靠上游节点配置。非周期性调度生产数据的表包罗:


  • 从本地上传到DataWorks的表
  • 维表
  • 非DataWorks调度产出的表
  • 手动任务产出的表
2.4.3 数据源网络联通性测试失败怎么办?

错误征象:添加数据源PolarDB时,网络连通性测试失败。
如何处置惩罚:切换到jdbc毗连串,同时查抄白名单配置,以及独享资源组的VPC配置。
2.4.4 提交节点报错:当前节点依靠的父节点输出名不存在

可能缘故原由1:没有节点产出这个表
可能缘故原由2:有节点产出该表数据,但是该表没有添加为该节点的输出
可能缘故原由3:存在同名的节点输出
三、MaxCompute

3.1 产品架构




  • 存储引擎:MaxCompute为您提供MaxCompute存储引擎(内部存储)用于存储MaxCompute表、资源等,同时您也可以通过外表的方式直接读取存储在OSS、TableStore、RDS等其他产品中的数据。 其中MaxCompute存储引擎主要采取列压缩存储格式,通常情况下可到达5倍压缩比。
  • 盘算引擎:MaxCompute为您提供MaxCompute SQL盘算引擎和CUPID盘算平台。可直接运行MaxCompute SQL任务。可运行Spark任务、Mars任务等三方引擎的任务。
  • 云服务层:MaxCompute支持创建差别的任务队列,并为每个队列配置差别的资源和优先级,以便对任务实行进行更精致的控制。MaxCompute也提供数据安全性的多层保护,包罗项目空隔断离、权限控制、数据加密,确保数据的安全和隐私。
  • 统一元数据及安全体系:MaxCompute的离线租户级别元数据信息会通过Information Schema提供服务,可以对作业的运行情况,例如资源消耗、运行时长、数据处置惩罚量等指标进行分析。MaxCompute还提供了完善的安全管理体系,例如访问控制、数据加密、动态脱敏等为数据安全性提供保障
  • 用户接口与开放性:包罗tunnel,api与sdk,jdbc,connecotr以及开放存储 数据生态支持 与dataworks深度结合,实现数据湖,数据集成,治理可视化等需求。 
3.2 核心概念和层次布局

核心概念

阐明

Project(项目)
项目是MaxCompute的根本构造单元,类似于传统数据库的Database或Schema的概念
Table(表)
表是MaxCompute的数据存储单元
Partition(分区)
分区Partition是指一张表下,根据分区字段对数据存储进行分别。如果表有分区,每个分区对应表下的一个目次,数据是分别存储在差别的分区目次下
View(视图)
视图是在表之上创建的虚拟表,它的布局和内容都来自表。如果想保留查询效果,但不想创建表占用存储,可以通过视图实现
User(用户)
MaxCompute支持通过阿里云账号、RAM用户或RAM脚色访问MaxCompute
Role(脚色)
脚色是MaxCompute安全功能中的概念,可以理解为拥有雷同权限的用户的聚集
Resource(资源)
资源是MaxCompute中特有的概念。当您使用MaxCompute的自界说函数(UDF)或MapReduce功能时,必要依靠资源来完成
Function(函数)
MaxCompute提供函数功能,包罗内建函数和UDF
Instance(实例)
即实际运行作业的一个具体实例,类同Hadoop中Job的概念
Networklink(网络毗连)
当使用外部表、UDF或湖仓一体功能时,MaxCompute默认未创建与外网或VPC网络间的网络毗连,必要开通网络毗连


通常MaxCompute的各层级概念的构造模式如下:


  • 一个企业可以在差别地域开通MaxCompute服务
  • 企业内的各个部门在开通服务的地域内创建和管理本身的项目(Project),用于存储该部门的数据。项目内可以存储多种范例对象,例如表(Table)、资源(Resource)、函数(Function)和实例(Instance)等
  • 各部门可以在项目内通过用户与脚色的管控,对项目内的各类数据进行权限控制 
3.3 功能特性

3.3.1 全托管Serverless在线服务



  • 对外以API方式访问的在线服务,开箱即用。
  • 预铺设大规模集群资源,可以按需使用、按量计费。
  • 无需平台运维,最小化运维投入。
3.3.2 弹性本领与扩展性



  • 存储和盘算独立扩展,支持企业将全部数据资产在一个平台上进行联动分析,消除数据孤岛。
  • 支持及时根据业务峰谷变化分配资源。
3.3.3 统一丰富的盘算和存储本领



  • MaxCompute支持多种盘算模型和丰富的UDF。
  • 采取列压缩存储格式,通常情况下具备5倍压缩本领,可以大幅节流存储成本。
3.3.4 数据建模、开辟、治理本领



  • 借助一站式数据开辟与治理平台DataWorks,可实现全域数据汇聚、融合加工和治理。
  • DataWorks支持对MaxCompute项目进行管理以及Web端查询编辑。
3.3.5 集成AI本领



  • 与人工智能平台 PAI无缝集成,提供强大的机器学习处置惩罚本领。
  • 可以使用熟悉的Spark-ML开展智能分析。
  • 使用Python机器学习三方库。
3.3.6 深度集成Spark引擎



  • 内建Apache Spark引擎,提供完整的Spark功能。
  • 与MaxCompute盘算资源、数据和权限体系深度集成。
3.3.7 湖仓一体



  • 集成对数据湖的访问分析,支持通过外部表映射、Spark直接访问方式开展数据湖分析。
  • 在一套数据仓库服务和用户接口下,实现数据湖与数据仓库的关联分析。
3.3.8 离线及时一体



  • 与及时数仓Hologres深度融合,支持外部表关联查询,支持存储层直读,查询效率相比其他范例外部表高5倍以上。
3.3.9 支持流式写入和近及时分析



  • 支持流式数据及时写入并在数据仓库中开展分析。
  • 与云上主要流式服务深度集成,轻松接入各种来源的流式数据。
  • 支持高性能秒级弹性并发查询,满足近及时分析场景需求。
3.3.10 连续的SaaS化数据保护



  • 为云上企业提供基础设施、数据中央、网络、供电、平台安万本领、用户权限管理、隐私保护等保三级超20项安全功能,兼具开源大数据与托管数据库的安万本领。
3.4 MaxCompute SQL与标准SQL的根本区别

主要区别
问题征象
解决方法
应用场景
不支持事务(不支持Commit和Rollback,不保举使用INSERT INTO)。
发起代码具备幂等性,支持重新实行。保举您使用INSERT OVERWRITE写数据。
不支持索引和主键约束。
无。
部分字段不支持默认值或默认函数。
如果字段有默认值,您可以在数据写入时自行赋值。MaxCompute支持在创建表时,对BIGINT、DOUBLE、BOOLEAN和STRING范例的字段添加默认值。
不支持自增字段。
无。
表分区
单表最多支持6万个分区。超过6万个分区会报错。
选择合适的分区列,减少分区数。
一次查询输入的分区不能超过1万个,否则会报错。如果是2级分区且查询时只根据2级分区进行过滤,总的分区数大于1万也可能导致报错。
解决方法请拜见实行INSERT INTO或INSERT OVERWRITE操纵时,报错a single instance cannot output data to more than 10000 partitions,如何解决?。
精度
DOUBLE范例存在精度问题。
不发起直接使用等于号(=)关联两个DOUBLE字段。发起将两个数相减,如果差距小于一个预设的值,则以为两个数是雷同的。例如ABS(a1-a2)<0.000000001。
固然MaxCompute支持高精度范例DECIMAL,但是有更高精度的要求。
如果有更高的精度要求,您可以先把数据存储为STRING范例,然后使用UDF实现对应的盘算。
数据范例转换
出现各种预期外的错误,代码维护问题。
如果有2个差别的字段范例必要实行JOIN操纵,发起您先转换字段范例再实行JOIN操纵。
日期范例和字符串的隐式转换。
如果在必要传入日期范例的函数中传入一个字符串,字符串和日期范例根据yyyy-mm-dd hh:mi:ss格式进行转换。
3.5 最佳实践-数据模型架构规范

3.5.1 数据层次分别



  • ODS:Operational Data Store,操纵数据层,在布局上其与源体系的增量大概全量数据根本保持一致。它相当于一个数据准备区,同时又记载基础数据及汗青变化。其主要作用是把基础数据引入到MaxCompute。
  • CDM:Common Data Model,公共维度模型层,又细分为DWD和DWS。它的主要作用是完成数据加工与整合、创建一致性的维度、构建可复用的面向分析和统计的明细究竟表以及汇总公共粒度的指标。
  • DWD:Data Warehouse Detail,明细数据层。
  • DWS:Data Warehouse Summary,汇总数据层。
  • ADS:Application Data Service,应用数据层。
3.5.2 数据分类架构



  • 该数据分类架构在ODS层分为三部分:数据准备区、离线数据和准及时数据区。在进入到CDM层后,由以下几部分组成:公共维度层:基于维度建模理念思想,创建整个企业的一致性维度。
  • 明细粒度究竟层:以业务过程为建模驱动,基于每个具体业务过程的特点,构建最细粒度的明细层究竟表。您可以结合企业的数据使用特点,将明细究竟表的某些重要维度属性字段做适当的冗余,即宽表化处置惩罚。
  • 公共汇总粒度究竟层:以分析的主题对象为建模驱动,基于上层的应用和产品的指标需求,构建公共粒度的汇总指标究竟表,以宽表化本领来物理化模型。

3.6 最佳实践 –小文件处置惩罚

3.6.1 小文件界说

MaxCompute使用盘古分布式文件体系是按块(Block)存放的,通常文件大小比块大小小的文件(默认块大小为64MB),被称为小文件。
3.6.2 小文件过多会带来的影响



  • 影响启动Map Instance,默认情况下一个小文件对应一个Instance,造成浪费资源,影响整体的实行性能。
  • 过多的小文件给盘古文件体系带来压力,且影响空间的有效使用,严肃的会直接导致盘古文件体系不可服务。
3.6.3 会产生小文件的场景



  • Reduce盘算过程会产生大量小文件。
  • Tunnel数据采集过程中会天生小文件。
  • Job实行过程中天生的各种临时文件、回收站保留的过期的文件等
3.7 常见问题

3.7.1 使用MaxCompute必要具备什么专业技能?

        MaxCompute支持多种盘算模型数据通道,满足多场景需求。以是您只必要会使用SQL、Python、Java等开辟语言就可以使用MaxCompute进行湖仓数据开辟与数据分析。
3.7.2 MaxCompute中的项目(project)发挥什么作用?

        项目(Project)是MaxCompute的根本构造单元,类似于传统数据库的Database或Schema的概念,是进行多用户隔离和访问控制的主要边界。项目中包罗多个对象,例如表(Table)、资源(Resource)、函数(Function)和实例(Instance)等。一个用户可以同时拥有多个项目的权限。通过安全授权,可以在一个项目访问另一个项目中的对象。
3.7.3 MaxCompute的表格范例有几种,分别是什么?

        MaxCompute的表格有两种范例:内部表和外部表(MaxCompute 2.0版本开始支持外部表)。
        对于内部表,所有的数据都存储在MaxCompute中,表中列的数据范例可以是MaxCompute支持的任意一种数据范例。
        对于外部表,MaxCompute并不真正持有数据,表格的数据可以存放在OSS或OTS中。MaxCompute仅会记载表格的Meta信息,您可以通过MaxCompute的外部表机制处置惩罚OSS或OTS上的非布局化数据,例如视频、音频、基因、气象、地理信息等。
3.7.4 MaxCompute常见错误信息如何理解,怎么定位问题?

        MaxCompute的常见报错信息编号有规范界说,格式为:异常编号:通用描述 - 上下文相关阐明。其中SQL、MapReduce、Tunnel的错误信息是不一样的。
总结

1、Elasticsearch



  • 组件:X-Pack提供高级功能,Beats采集数据,Logstash处置惩罚数据,Kibana可视化分析。
  • 特性:高性能、安全性好、可用性高、可扩展性强、易于维护。
2、DataWorks



  • 功能:支持数据建模、集成、开辟、分析和治理。
  • 实践:通过调度参数实现增量和汗青数据同步。
  • 问题:解决调度依靠和数据源网络联通性测试失败等问题。
3、MaxCompute



  • 架构:提供存储和盘算引擎,支持多种盘算模型和UDF。
  • 特性:全托管Serverless服务,弹性扩展,集成AI本领,支持湖仓一体和及时分析。

免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。
回复

使用道具 举报

0 个回复

正序浏览

快速回复

您需要登录后才可以回帖 登录 or 立即注册

本版积分规则

吴旭华

金牌会员
这个人很懒什么都没写!

标签云

快速回复 返回顶部 返回列表