马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?立即注册
x
什么是堆
堆是一种满意以下条件的树:
堆中的每一个节点值都大于等于(或小于等于)子树中全部节点的值。大概说,任意一个节点的值都大于等于(或小于等于)全部子节点的值。
大家可以把堆(最大堆)理解为一个公司,这个公司很公平,谁能力强谁就当老大,不存在弱的人当老大,老大手底下的人一定不会比他强。这样有助于理解后续堆的操作。
!!!特别提示:
- 很多博客说堆是完全二叉树,其实并非如此,堆不一定是完全二叉树,只是为了方便存储和索引,我们通常用完全二叉树的情势来表示堆,事实上,广为人知的斐波那契堆和二项堆就不是完全二叉树,它们甚至都不是二叉树。
- (二叉)堆是一个数组,它可以被看成是一个 近似的完全二叉树。——《算法导论》第三版
大家可以尝试判断下面给出的图是否是堆?
第 1 个和第 2 个是堆。第 1 个是最大堆,每个节点都比子树中全部节点大。第 2 个是最小堆,每个节点都比子树中全部节点小。
第 3 个不是,第三个中,根结点 1 比 2 和 15 小,而 15 却比 3 大,19 比 5 大,不满意堆的性子。
堆的用途
当我们只关心全部数据中的最大值大概最小值,存在多次获取最大值大概最小值,多次插入或删除数据时,就可以使用堆。
有小伙伴大概会想到用有序数组,初始化一个有序数组时间复杂度是 O(nlog(n)),查找最大值大概最小值时间复杂度都是 O(1),但是,涉及到更新(插入或删除)数据时,时间复杂度为 O(n),纵然是使用复杂度为 O(log(n)) 的二分法找到要插入大概删除的数据,在移动数据时也需要 O(n) 的时间复杂度。
相对于有序数组而言,堆的主要优势在于插入和删除数据效率较高。 因为堆是基于完全二叉树实现的,所以在插入和删除数据时,只需要在二叉树中上下移动节点,时间复杂度为 O(log(n)),相比有序数组的 O(n),效率更高。
不外,需要注意的是:Heap 初始化的时间复杂度为 O(n),而非O(nlogn)。
堆的分类
堆分为 最大堆 和 最小堆。二者的区别在于节点的排序方式。
- 最大堆:堆中的每一个节点的值都大于等于子树中全部节点的值
- 最小堆:堆中的每一个节点的值都小于等于子树中全部节点的值
如下图所示,图 1 是最大堆,图 2 是最小堆
堆的存储
之前先容树的时候说过,由于完全二叉树的优秀性子,利用数组存储二叉树即节流空间,又方便索引(若根结点的序号为 1,那么对于树中任意节点 i,其左子节点序号为 2*i,右子节点序号为 2*i+1)。
为了方便存储和索引,(二叉)堆可以用完全二叉树的情势举行存储。存储的方式如下图所示:
堆的操作
堆的更新操作主要包括两种 : 插入元素 和 删除堆顶元素。操作过程需要偏重把握和理解。
在进入正题之前,再重申一遍,堆是一个公平的公司,有能力的人天然会走到与他能力所匹配的位置
插入元素
插入元素,作为一个新入职的员工,初来乍到,这个员工需要从下层做起
1.将要插入的元素放到最后
堆-插入元素-1
有能力的人会逐渐升职加薪,是金子总会发光的!!!
2.从底向上,如果父结点比该元素小,则该节点和父结点交换,直到无法交换
堆-插入元素2
堆-插入元素3
删除堆顶元素
根据堆的性子可知,最大堆的堆顶元素为全部元素中最大的,最小堆的堆顶元素是全部元素中最小的。当我们需要多次查找最大元素大概最小元素的时候,可以利用堆来实现。
删除堆顶元素后,为了保持堆的性子,需要对堆的结构举行调解,我们将这个过程称之为"堆化",堆化的方法分为两种:
- 一种是自底向上的堆化,上述的插入元素所使用的就是自底向上的堆化,元素从最底部向上移动。
- 另一种是自顶向下堆化,元素由最顶部向下移动。在解说删除堆顶元素的方法时,我将阐述这两种操作的过程,大家可以体会一下二者的不同。
自底向上堆化
在堆这个公司中,会出现老大离职的现象,老大离职之后,他的位置就空出来了
起首删除堆顶元素,使得数组中下标为 1 的位置空出。
删除堆顶元素1
那么他的位置由谁来接替呢,固然是他的直接下属了,谁能力强就让谁上呗
比较根结点的左子节点和右子节点,也就是下标为 2,3 的数组元素,将较大的元素填充到根结点(下标为 1)的位置。
删除堆顶元素2
这个时候又空出一个位置了,老例子,谁有能力谁上
一直循环比较空出位置的左右子节点,并将较大者移至空位,直到堆的最底部
删除堆顶元素3
这个时候已经完成了自底向上的堆化,没有元素可以填补空缺了,但是,我们可以看到数组中出现了“气泡”,这会导致存储空间的浪费。接下来我们试试自顶向下堆化。
自顶向下堆化
自顶向下的堆化用一个词形容就是“石沉大海”,那么第一件事情,就是把石头抬起来,从海面扔下去。这个石头就是堆的最后一个元素,我们将最后一个元素移动到堆顶。
删除堆顶元素4
然后开始将这个石头沉入海底,不停与左右子节点的值举行比较,和较大的子节点交换位置,直到无法交换位置。
删除堆顶元素5
删除堆顶元素6
堆的操作总结
- 插入元素:先将元素放至数组末端,再自底向上堆化,将末端元素上浮
- 删除堆顶元素:删除堆顶元素,将末端元素放至堆顶,再自顶向下堆化,将堆顶元素下沉。也可以自底向上堆化,只是会产生“气泡”,浪费存储空间。最好接纳自顶向下堆化的方式。
堆排序
堆排序的过程分为两步:
- 第一步是建堆,将一个无序的数组建立为一个堆
- 第二步是排序,将堆顶元素取出,然后对剩下的元素举行堆化,反复迭代,直到全部元素被取出为止。
建堆
如果你已经足够了解堆化的过程,那么建堆的过程把握起来就比较容易了。建堆的过程就是一个对全部非叶节点的自顶向下堆化过程。
起主要了解哪些好坏叶节点,最后一个节点的父结点及它之前的元素,都好坏叶节点。也就是说,如果节点个数为 n,那么我们需要对 n/2 到 1 的节点举行自顶向下(沉底)堆化。
具体过程如下图:
建堆1
将初始的无序数组抽象为一棵树,图中的节点个数为 6,所以 4,5,6 节点为叶节点,1,2,3 节点为非叶节点,所以要对 1-3 号节点举行自顶向下(沉底)堆化,注意,顺序是从后往前堆化,从 3 号节点开始,一直到 1 号节点。
3 号节点堆化效果:
建堆1
2 号节点堆化效果:
建堆1
1 号节点堆化效果:
建堆1
至此,数组所对应的树已经成为了一个最大堆,建堆完成!
排序
由于堆顶元素是全部元素中最大的,所以我们重复取出堆顶元素,将这个最大的堆顶元素放至数组末端,并对剩下的元素举行堆化即可。
现在思考两个题目:
- 删除堆顶元素后需要执行自顶向下(沉底)堆化照旧自底向上(上浮)堆化?
- 取出的堆顶元素存在哪,新建一个数组存?
先回答第一个题目,我们需要执行自顶向下(沉底)堆化,这个堆化一开始要将末端元素移动至堆顶,这个时候末端的位置就空出来了,由于堆中元素已经减小,这个位置不会再被使用,所以我们可以将取出的元素放在末端。
机警的小伙伴已经发现了,这其实是做了一次交换操作,将堆顶和末端元素变更位置,从而将取出堆顶元素和堆化的第一步(将末端元素放至根结点位置)举行归并。
具体过程如下图所示:
取出第一个元素并堆化:
堆排序1
取出第二个元素并堆化:
堆排序2
取出第三个元素并堆化:
堆排序3
取出第四个元素并堆化:
堆排序4
取出第五个元素并堆化:
堆排序5
取出第六个元素并堆化:
堆排序6
堆排序完成!
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |