一、Flink CDC、Flink、CDC各有啥关系
Flink:流式盘算框架,不包含 Flink CDC,和 Flink CDC不要紧
CDC:是一种思想,理念,不涉及某一门具体的技术。CDC 是变更数据捕捉(Change Data Capture)技术的缩写,它可以将源数据库(Source)的增量变更记录,同步到一个或多个数据目的(Sink)。在同步过程中,还可以对数据进行一定的处理,例如过滤、关联、分组、统计等。目前专业做数据库事件担当和剖析的中间件是Debezium,如果是捕捉Mysql,还有Canal。
Flink CDC:是 CDC 的一种实现而已,不属于 Flink 子版块。这个技术是阿里开辟的。目的是为了丰富 Flink 的生态。
1.1 概述
Flink CDC 基于数据库日志的 Change Data Caputre 技术,实现了全量和增量的一体化读取能力,并借助 Flink 良好的管道能力和丰富的上下游生态,支持捕捉多种数据库的变更,并将这些变更实时同步到下游存储。
1.2 和 jdbc Connectors 对比
JDBC Connectors 连接器,确实可以读取外部的 数据库。比如:MySQL、Oracle、SqlServer等。但是,JDBC连数据库,只是瞬时操纵,没办法连续监听数据库的数据变化。
Flink CDC Connectors,可以实现数据库的变更捕捉,能够连续不断地把变更数据同步到下游的体系中。
官网概述:https://ververica.github.io/flink-cdc-connectors/
github链接:https://github.com/ververica/flink-cdc-connectors
二、利用
FlinkCDC 同步数据,有两种方式,一种是 FlinkSQL 的方式,一种是Flink DataStream 和 Table API 的方式。
我这里直接用的是 ieda 测试的 DataStream 方式。
代码来自:https://github.com/yclxiao/flink-cdc-demo/tree/main/src/main/java/com/yclxiao/flinkcdcdemo
CloudAcctProfit2DwsHdjProfitRecordAPI.java
- import com.alibaba.fastjson.JSON;
- import com.alibaba.fastjson.JSONObject;
- import com.ververica.cdc.connectors.mysql.source.MySqlSource;
- import com.ververica.cdc.debezium.JsonDebeziumDeserializationSchema;
- import com.xiaoqiang.utils.JdbcUtil;
- import org.apache.commons.lang3.StringUtils;
- import org.apache.commons.lang3.time.DateFormatUtils;
- import org.apache.flink.api.common.eventtime.WatermarkStrategy;
- import org.apache.flink.api.common.functions.FilterFunction;
- import org.apache.flink.api.common.functions.FlatMapFunction;
- import org.apache.flink.configuration.Configuration;
- import org.apache.flink.streaming.api.datastream.DataStreamSource;
- import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
- import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
- import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
- import org.apache.flink.util.Collector;
- import org.slf4j.Logger;
- import org.slf4j.LoggerFactory;
- import java.sql.Connection;
- import java.sql.DriverManager;
- import java.sql.ResultSet;
- import java.sql.Statement;
- import java.util.*;
- public class CloudAcctProfit2DwsHdjProfitRecordAPI {
- private static final Logger LOG = LoggerFactory.getLogger(CloudAcctProfit2DwsHdjProfitRecordAPI.class);
- private static String MYSQL_HOST = "x.x.x.x";
- private static int MYSQL_PORT = 3306;
- private static String MYSQL_USER = "root";
- private static String MYSQL_PASSWD = "xiaoqiang";
- private static String SYNC_DB = "league_test";
- private static List<String> SYNC_TABLES = Arrays.asList("league_test.oc_settle_profit");
- public static void main(String[] args) throws Exception {
- MySqlSource<String> mySqlSource = MySqlSource.<String>builder()
- .hostname(MYSQL_HOST)
- .port(MYSQL_PORT)
- .databaseList(SYNC_DB) // set captured database
- .tableList(String.join(",", SYNC_TABLES)) // set captured table
- .username(MYSQL_USER)
- .password(MYSQL_PASSWD)
- .deserializer(new JsonDebeziumDeserializationSchema()) // converts SourceRecord to JSON String
- .build();
- StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
- env.setParallelism(1);
- env.enableCheckpointing(5000);
- DataStreamSource<String> cdcSource = env.fromSource(mySqlSource, WatermarkStrategy.noWatermarks(), "CDC Source" + "xiaoqiang-flink");
- List<String> tableList = getTableList();
- System.out.println("tableList--->"+tableList);
- for (String tbl : tableList) {
- SingleOutputStreamOperator<String> filterStream = filterTableData(cdcSource, "oc_settle_profit");
- // SingleOutputStreamOperator<String> cleanStream = clean(filterStream);
- // 流的数据sink出去
- filterStream.addSink(new CustomDealDataSink())
- .name("sink " + tbl);
- }
- env.execute("xiaoqiang-flink");
- }
- /**
- * 自定义sink
- */
- private static class CustomDealDataSink extends RichSinkFunction<String> {
- private transient Connection coalitiondbConnection;
- private transient Statement coalitiondbStatement;
- private transient Connection cloudConnection;
- private transient Statement cloudStatement;
- @Override
- public void open(Configuration parameters) throws Exception {
- super.open(parameters);
- // 在这里初始化 JDBC 连接
- coalitiondbConnection = DriverManager.getConnection("jdbc:mysql://x.x.x.x:3306/league_test", "root", "");
- coalitiondbStatement = coalitiondbConnection.createStatement();
- cloudConnection = DriverManager.getConnection("jdbc:mysql://x.x.x.x:3306/cloud_test", "root", "");
- cloudStatement = cloudConnection.createStatement();
- }
- @Override
- public void invoke(String value, Context context) throws Exception {
- // 解析拿到的CDC-JSON数据
- JSONObject rowJson = JSON.parseObject(value);
- String outNo = rowJson.getString("out_no");
- Integer userType = rowJson.getInteger("user_type");
- String id = rowJson.getString("id");
- String payOrderNo = rowJson.getString("pay_order_no");
- String title = rowJson.getString("title");
- String fromUserId = rowJson.getString("from_user_id");
- String fromAccountId = rowJson.getString("from_account_id");
- String userId = rowJson.getString("user_id");
- String accountId = rowJson.getString("account_id");
- Integer amount = rowJson.getInteger("amount");
- Integer profitState = rowJson.getInteger("profit_state");
- Date profitTime = rowJson.getTimestamp("profit_time");
- Integer refundState = rowJson.getInteger("refund_state");
- Date refundTime = rowJson.getTimestamp("refund_time");
- Date addTime = rowJson.getTimestamp("add_time");
- String remark = rowJson.getString("remark");
- String acctCircle = rowJson.getString("acct_circle");
- Integer fromUserType = rowJson.getInteger("from_user_type");
- String companyId = rowJson.getString("company_id");
- String bizCompanyId = rowJson.getString("biz_company_id");
- // if (1 != profitState || !"PG11111".equals(acctCircle)) {
- // return;
- // }
- //
- // // 读取相关表的数据(与其他表进行关联)
- // Integer bizType = null;
- // String contributeUserId = null;
- // String relationBrandOwnerId = null;
- // ResultSet virtualOrderResultSet = coalitiondbStatement.executeQuery("select * from tc_virtual_order where order_type != 2 and id = '" + outNo + "'");
- // // 如果是tc_virtual_order订单(上岗卡、安心卡、课程)
- // if (virtualOrderResultSet.next()) {
- // // 处理数据逻辑
- // Integer virtualOrder4OrderType = virtualOrderResultSet.getInt("order_type");
- // String virtualOrder4CompanyId = virtualOrderResultSet.getString("company_id");
- // String virtualOrder4BrandId = virtualOrderResultSet.getString("brand_id");
- // // 上岗卡订单排掉,因为已经有别的任务处理了
- // if (virtualOrder4OrderType == 2) {
- // return;
- // }
- // // orderType转换
- // if (virtualOrder4OrderType == 6) {
- // bizType = 10;
- // } else if (virtualOrder4OrderType == 1) {
- // bizType = 11;
- // } else if (virtualOrder4OrderType == 5) {
- // bizType = 12;
- // }
- // // userType转换
- // if (virtualOrder4OrderType == 6 && userType == 92) {
- // contributeUserId = virtualOrder4CompanyId;
- // } else if (virtualOrder4OrderType == 1 && userType == 92) {
- // contributeUserId = virtualOrder4CompanyId;
- // } else if (virtualOrder4OrderType == 5 && userType == 92) {
- // contributeUserId = virtualOrder4CompanyId;
- // }
- // // relationBrandOwnerId转换
- // if (virtualOrder4OrderType == 6 && userType == 90) {
- // relationBrandOwnerId = virtualOrder4BrandId;
- // } else if (virtualOrder4OrderType == 1 && userType == 90) {
- // relationBrandOwnerId = virtualOrder4BrandId;
- // } else if (virtualOrder4OrderType == 5 && userType == 90) {
- // relationBrandOwnerId = virtualOrder4BrandId;
- // }
- // // remark转换
- // if (virtualOrder4OrderType == 1 || virtualOrder4OrderType == 5) {
- // remark = title;
- // }
- // } else {
- // // 如果不是tc_virtual_order的数据,则可能是其他数据,此处只保留好到家实物商品数据
- // if (StringUtils.isBlank(payOrderNo)) {
- // return;
- // }
- // ResultSet acctPayOrderResultSet = cloudStatement.executeQuery("select * from acct_pay_order t where t.id = '" + payOrderNo + "'");
- // if (!acctPayOrderResultSet.next()) {
- // return;
- // }
- // Integer payCate = acctPayOrderResultSet.getInt("pay_cate");
- // if (200100 != payCate) { // 好到家实物商品类型
- // return;
- // }
- //
- // bizType = 20;
- // if (userType == 92 && StringUtils.isNotBlank(bizCompanyId)) {
- // contributeUserId = bizCompanyId;
- // } else if (userType == 90 && StringUtils.isNotBlank(bizCompanyId)) {
- // ResultSet brandOwnerIdResultSet = cloudStatement.executeQuery("select * from uc_brand_partner t where t.company_id = '" + bizCompanyId + "'");
- // if (brandOwnerIdResultSet.next()) {
- // relationBrandOwnerId = brandOwnerIdResultSet.getString("brand_owner_id");
- // }
- // }
- // }
- // if (StringUtils.isBlank(remark)) {
- // remark = title;
- // }
- // 数据写入到mysql
- String insertSql = "INSERT INTO dws_profit_record_hdj_flink_api (id, show_profit_id, order_no, from_user_id, from_user_type, user_id,\n" +
- " user_type, amount, profit_time, state, acct_circle, biz_type,\n" +
- " contribute_user_id, relation_brand_owner_id, remark, add_time)\n" +
- "VALUES ('" + id + "', '" + "JSD" + id + "', '" + outNo + "', '" + fromUserId + "', " + fromUserType + ", '" + userId + "', " + userType + ",\n" +
- " " + amount + ", '" + DateFormatUtils.format(new Date(), "yyyy-MM-dd HH:mm:ss", TimeZone.getTimeZone("GMT")) + "', " + profitState + ", '" + acctCircle + "', " + 1 + ", " + (StringUtils.isBlank("123") ? null : "'" + "contributeUserId" + "'") + ", " + (StringUtils.isBlank("relationBrandOwnerId") ? null : "'" + "relationBrandOwnerId" + "'") + ", '" + remark + "',\n" +
- " '" + DateFormatUtils.format(new Date(), "yyyy-MM-dd HH:mm:ss", TimeZone.getTimeZone("GMT")) + "');";
- cloudStatement.execute("delete from dws_profit_record_hdj_flink_api where id = '" + id + "'");
- System.out.println("insertSql--->"+insertSql);
- cloudStatement.execute(insertSql);
- }
- @Override
- public void close() throws Exception {
- super.close();
- // 在这里关闭 JDBC 连接
- coalitiondbStatement.close();
- coalitiondbConnection.close();
- cloudStatement.close();
- cloudConnection.close();
- }
- }
- /**
- * 清晰数据
- *
- * @param source
- * @return
- */
- private static SingleOutputStreamOperator<String> clean(SingleOutputStreamOperator<String> source) {
- return source.flatMap(new FlatMapFunction<String, String>() {
- @Override
- public void flatMap(String row, Collector<String> out) throws Exception {
- try {
- LOG.info("============================row:{}", row);
- JSONObject rowJson = JSON.parseObject(row);
- String op = rowJson.getString("op");
- //history,insert,update
- if (Arrays.asList("r", "c", "u").contains(op)) {
- out.collect(rowJson.getJSONObject("after").toJSONString());
- } else {
- LOG.info("filter other op:{}", op);
- }
- } catch (Exception ex) {
- LOG.warn("filter other format binlog:{}", row);
- }
- }
- });
- }
- /**
- * 过滤数据
- *
- * @param source
- * @param table
- * @return
- */
- private static SingleOutputStreamOperator<String> filterTableData(DataStreamSource<String> source, String table) {
- return source.filter(new FilterFunction<String>() {
- @Override
- public boolean filter(String row) throws Exception {
- try {
- JSONObject rowJson = JSON.parseObject(row);
- JSONObject source = rowJson.getJSONObject("source");
- String tbl = source.getString("table");
- return table.equals(tbl);
- } catch (Exception ex) {
- ex.printStackTrace();
- return false;
- }
- }
- });
- }
- private static List<String> getTableList() {
- List<String> tables = new ArrayList<>();
- String sql = "SELECT TABLE_SCHEMA,TABLE_NAME FROM information_schema.tables WHERE TABLE_SCHEMA = '" + SYNC_DB + "'";
- List<JSONObject> tableList = JdbcUtil.executeQuery(MYSQL_HOST, MYSQL_PORT, MYSQL_USER, MYSQL_PASSWD, sql);
- for (JSONObject jsob : tableList) {
- String schemaName = jsob.getString("TABLE_SCHEMA");
- String tblName = jsob.getString("TABLE_NAME");
- String schemaTbl = schemaName + "." + tblName;
- if (SYNC_TABLES.contains(schemaTbl)) {
- tables.add(tblName);
- }
- }
- return tables;
- }
- }
复制代码 JdbcUtil.java
- import com.alibaba.fastjson.JSONObject;
- import org.slf4j.Logger;
- import org.slf4j.LoggerFactory;
- import java.sql.*;
- import java.util.ArrayList;
- import java.util.List;
- public class JdbcUtil {
- static {
- try {
- // Class.forName("com.mysql.cj.jdbc.Driver");
- Class.forName("com.mysql.jdbc.Driver");
- } catch (ClassNotFoundException e) {
- e.printStackTrace();
- }
- }
- private static final Logger LOG = LoggerFactory.getLogger(JdbcUtil.class);
- public static void main(String[] args) throws SQLException {
- }
- public static List<JSONObject> executeQuery(String hostUrl, int port, String user, String password, String sql) {
- List<JSONObject> beJson = new ArrayList<>();
- String connectionUrl = String.format("jdbc:mysql://%s:%s/league_test?useUnicode=true&characterEncoding=utf-8&useSSL=false&serverTimezone=Asia/Shanghai", hostUrl, port);
- Connection con = null;
- try {
- con = DriverManager.getConnection(connectionUrl, user, password);
- PreparedStatement ps = con.prepareStatement(sql);
- ResultSet rs = ps.executeQuery();
- beJson = resultSetToJson(rs);
- } catch (SQLException e) {
- e.printStackTrace();
- } catch (Exception e) {
- e.printStackTrace();
- } finally {
- try {
- con.close();
- } catch (Exception e) {
- }
- }
- return beJson;
- }
- private static List<JSONObject> resultSetToJson(ResultSet rs) throws SQLException {
- List<JSONObject> list = new ArrayList<>();
- ResultSetMetaData metaData = rs.getMetaData();
- int columnCount = metaData.getColumnCount();
- while (rs.next()) {
- JSONObject jsonObj = new JSONObject();
- for (int i = 1; i <= columnCount; i++) {
- String columnName = metaData.getColumnLabel(i);
- String value = rs.getString(columnName);
- jsonObj.put(columnName, value);
- }
- list.add(jsonObj);
- }
- return list;
- }
- }
复制代码 pom.xml:
- <dependency>
- <groupId>com.ververica</groupId>
- <artifactId>flink-connector-mysql-cdc</artifactId>
- <version>2.4.0</version>
- </dependency>
复制代码 2.1 Mysql 打开 bin-log 功能
og_bin 的Value如果为ON代表开启,如果为OFF代表关闭,MySQL8.0默认是开启的:
- # 查看是否开启binlog
- mysql> SHOW VARIABLES LIKE '%log_bin%';
复制代码 关闭状态:
- log_bin为ON代表MySQL已经开启binlog日志记录
- log_bin_basename设置了binlog的文件路径及文件前缀名
- log_bin_index设置了binlog索引文件的路径
开启状态:
- # 在centos中mysql的配置文件一般都在/etc/mysql目录下,如果不在可以通过 find / -name "my.cnf" 查找
- vi /etc/mysql/my.cnf
- # 服务ID
- server-id=1
- # binlog 配置 只要配置了log_bin地址 就会开启
- log_bin = /var/lib/mysql/mysql_bin
- # 日志存储天数 默认0 永久保存
- # 如果数据库会定期归档,建议设置一个存储时间不需要一直存储binlog日志,理论上只需要存储归档之后的日志
- expire_logs_days = 30
- # binlog最大值
- max_binlog_size = 1024M
- # 规定binlog的格式,binlog有三种格式statement、row、mixad,默认使用statement,建议使用row格式
- binlog_format = ROW
- # 在提交n次事务后,进行binlog的落盘,0为不进行强行的刷新操作,而是由文件系统控制刷新日志文件,如果是在线交易和账有关的数据建议设置成1,如果是其他数据可以保持为0即可
- sync_binlog = 1
- # 重启MySQL服务使配置生效
- systemctl restart mysqld / service mysql restart
- # 查看日志列表
- SHOW MASTER LOGS;
复制代码 可参考:MySQL 开启设置binlog以及通过binlog恢复数据
2.2 在 Mysql 中建库建表准备
- CREATE DATABASE IF NOT EXISTS cloud_test;
- CREATE DATABASE IF NOT EXISTS league_test;
- CREATE TABLE league_test.oc_settle_profit (
- id varchar(32),
- show_profit_id varchar(32),
- order_no varchar(32),
- from_user_id varchar(32),
- from_user_type int(11),
- user_id varchar(32),
- user_type int(11),
- rate int(11),
- amount int(11),
- type int(11),
- add_time datetime,
- state int(11),
- expect_profit_time datetime,
- profit_time datetime,
- profit_mode int(11),
- opt_code varchar(32),
- opt_name varchar(32),
- acct_circle varchar(32),
- process_state int(11),
- parent_id varchar(32),
- keep_account_from_user_id varchar(32),
- keep_account_from_bm_user_id varchar(32),
- keep_account_user_id varchar(32),
- keep_account_bm_user_id varchar(32),
- biz_type int(11),
- remark varchar(32),
- contribute_user_id varchar(32),
- relation_brand_owner_id varchar(32),
- PRIMARY KEY (id) USING BTREE
- );
- CREATE TABLE cloud_test.dws_profit_record_hdj_flink_api (
- id varchar(32),
- show_profit_id varchar(32),
- order_no varchar(32),
- from_user_id varchar(32),
- from_user_type int(11),
- user_id varchar(32),
- user_type int(11),
- amount int(11),
- profit_time datetime,
- state int(11),
- acct_circle varchar(32),
- biz_type int(11),
- contribute_user_id varchar(32),
- relation_brand_owner_id varchar(32),
- remark varchar(32),
- add_time datetime,
- PRIMARY KEY (id) USING BTREE
- );
复制代码 2.3 遇到的坑
2.3.1 The MySQL server has a timezone offset (0 seconds ahead of UTC)
用 JDBC 连接 Mysql 的时间报错:The MySQL server has a timezone offset (0 seconds ahead of UTC)
缘故原由:从错误即可知道是时区的错误。
- show variables like '%time_zone%';
- Variable_name |Value |
- ----------------+------+
- time_zone |SYSTEM|
- // 或者下面这条命令
- SELECT @@global.time_zone;
复制代码 办理:利用 root 用户登录 mysql,再执行 set global time_zone='+8:00' 命令。
注意:一开始改成了 SET GLOBAL time_zone = 'Asia/Shanghai',但并不好使。
2.3.2 自动转换datetime为时间戳题目
Apache Flink 是一种流处理框架,它可以读取 MySQL binlog 日志,并将其转换为流数据。然而,由于Flink内部采取的时间戳格式与 MySQL 的 datetime 格式差别,所以在抓取 binlog 时,须要进行一定的转换才华正确地剖析数据。
自界说类:DateTimeConverter 实现 CustomConverter 接口,重写对应方法对 mysql 的时间类型进行尺度转换
引入:
- public class FlinkSourceUtil {
-
- public static MySqlSource<JSONObject> getMySqlSource(ParameterTool parameterTool,List<String> databases, List<String> tables){
- Properties props = new Properties();
- props.setProperty("useSSL", "false");
- props.setProperty("allowPublicKeyRetrieval", "true");
-
- Properties debeziumProperties = new Properties();
- debeziumProperties.setProperty("converters", "dateConverters");
- debeziumProperties.setProperty("dateConverters.type", "com.xxx.util.DateTimeConverter");
- debeziumProperties.setProperty("dateConverters.format.date", "yyyy-MM-dd");
- debeziumProperties.setProperty("dateConverters.format.time", "HH:mm:ss");
- debeziumProperties.setProperty("dateConverters.format.datetime", "yyyy-MM-dd HH:mm:ss");
- debeziumProperties.setProperty("dateConverters.format.timestamp", "yyyy-MM-dd HH:mm:ss");
- debeziumProperties.setProperty("dateConverters.format.timestamp.zone", "UTC+8");
-
- String[] databaseArray = databases.toArray(new String[0]);
- String[] tableArray = tables.toArray(new String[0]);
-
- MySqlSource<JSONObject> mySqlSource = MySqlSource.<JSONObject>builder()
- .hostname(parameterTool.get(Constant.MYSQl_SOURCE_HOST_NAME))
- .port(Integer.parseInt(parameterTool.get(Constant.MYSQl_SOURCE_PORT)))
- .databaseList(databaseArray)
- .tableList(tableArray)
- .username(parameterTool.get(Constant.MYSQL_SOURCE_USER_NAME))
- .password(parameterTool.get(Constant.MYSQL_SOURCE_PASSWORD))
- .deserializer(new MyDebeziumDeserializationSchema())
- .debeziumProperties(debeziumProperties)
- .startupOptions(StartupOptions.initial())
- .serverId(parameterTool.get(Constant.SERVER_ID))
- .jdbcProperties(props)
- .build();
- return mySqlSource;
- }
- }
复制代码 参考:
关于flinkCDC监听MySQL binlog时自动转换datetime为时间戳题目
FlinkCDC时间题目timestamp等
flink-core抓mysql-binlog,字段datetime会自动转换成时间戳,怎么办理?
2.3.3 重起程序会全量读取 binlog,我想要的是增量
其实 MySqlSourceBuilder 是有一个方法特意指定 startUP mode 的,改造代码
- MySqlSourceBuilder<String> mySqlSource = new MySqlSourceBuilder<>();
- mySqlSource.startupOptions(StartupOptions.latest());
- mySqlSource
- .hostname(MYSQL_HOST)
- .port(MYSQL_PORT)
- .databaseList(SYNC_DB) // set captured database
- .tableList(SYNC_TABLES) // set captured table
- .username(MYSQL_USER)
- .password(MYSQL_PASSWD)
- .deserializer(new JsonDebeziumDeserializationSchema()) // converts SourceRecord to JSON String
- .debeziumProperties(debeziumProperties)
- .build();
- StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
- env.setParallelism(1);
- env.enableCheckpointing(5000);
- DataStreamSource<String> cdcSource = env.fromSource(mySqlSource.build(), WatermarkStrategy.noWatermarks(), "CDC Source" + "flinkcdc-kafka");
复制代码 参考:Flink cdc怎样只进行增量同步,差别步汗青数据(只读取binlog)
2.4 测试
Idea 启动程序后,在 oc_settle_profit 表中插入数据后 dws_profit_record_hdj_flink_api 也可以同步插入相应的数据。
参考:
【博学谷学习记录】超强总结,专心分享|大数据之flinkCDC
一次打通FlinkCDC同步Mysql数据
三、番外
用 Flink CDC 可以监控 Mysql,但无法监控 StarRocks,和官方扣问过,目前 StarRocks 并没有像 Mysql 这样被外部感知 DDL 操纵的 bin-log 功能,所以暂时还无法用 Flink CDC 监控 StarRocks。
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |