前言
本文重要是以kafka 09的client为例子,详解kafka client的使用,包括kafka消费者的三种消费语义at-most-once, at-least-once, 和 exactly-once message ,生产者的使用等。
(一) 创建topic
- bin/kafka-topics --zookeeper localhost:2181 --create --topic normal-topic --partitions 2 --replication-factor 1
复制代码 (二) 生产者
- public class ProducerExample {
- public static void main(String[] str) throws InterruptedException, IOException {
- System.out.println("Starting ProducerExample ...");
- sendMessages();
- }
- private static void sendMessages() throws InterruptedException, IOException {
- Producer<String, String> producer = createProducer();
- sendMessages(producer);
- // Allow the producer to complete sending of the messages before program exit.
- Thread.sleep(20);
- }
- private static Producer<String, String> createProducer() {
- Properties props = new Properties();
- props.put("bootstrap.servers", "localhost:9092");
- props.put("acks", "all");
- props.put("retries", 0);
- // Controls how much bytes sender would wait to batch up before publishing to Kafka.
- props.put("batch.size", 10);
- props.put("linger.ms", 1);
- props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
- props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
- return new KafkaProducer(props);
- }
- private static void sendMessages(Producer<String, String> producer) {
- String topic = "normal-topic";
- int partition = 0;
- long record = 1;
- for (int i = 1; i <= 10; i++) {
- producer.send(
- new ProducerRecord<String, String>(topic, partition, Long.toString(record),Long.toString(record++)));
- }
- }
- }
复制代码 (三)消费者
消费者注册到kafka有多种方式:
subscribe:这种方式在新增topic或者partition或者消费者增加或者消费者减少的时候,会举行消费者组内消费者的再平衡。
assign:这种方式注册的消费者不会举行rebalance。
上面两种方式都是可以实现,三种消费语义的。具体API的使用请看下文。
1. At-most-once Kafka Consumer
做多一次消费语义是kafka消费者的默认实现。配置这种消费者最简单的方式是
1). enable.auto.commit设置为true。
2). auto.commit.interval.ms设置为一个较低的时间范围。
3). consumer.commitSync()不要调用该方法。
由于上面的配置,就可以使得kafka有线程负责按照指定隔断提交offset。
但是这种方式会使得kafka消费者有两种消费语义:
a.最多一次语义->at-most-once
消费者的offset已经提交,但是消息还在处理,这个时候挂了,再重启的时候会从上次提交的offset处消费,导致上次在处理的消息部分丢失。
b. 最少一次消费语义->at-least-once
消费者已经处理完了,但是offset还没提交,那么这个时候消费者挂了,就会导致消费者重复消费消息处理。但是由于auto.commit.interval.ms设置为一个较低的时间范围,会降低这种情况出现的概率。
代码如下:
- public class AtMostOnceConsumer {
- public static void main(String[] str) throws InterruptedException {
- System.out.println("Starting AtMostOnceConsumer ...");
- execute();
- }
- private static void execute() throws InterruptedException {
- KafkaConsumer<String, String> consumer = createConsumer();
- // Subscribe to all partition in that topic. 'assign' could be used here
- // instead of 'subscribe' to subscribe to specific partition.
- consumer.subscribe(Arrays.asList("normal-topic"));
- processRecords(consumer);
- }
- private static KafkaConsumer<String, String> createConsumer() {
- Properties props = new Properties();
- props.put("bootstrap.servers", "localhost:9092");
- String consumeGroup = "cg1";
- props.put("group.id", consumeGroup);
- // Set this property, if auto commit should happen.
- props.put("enable.auto.commit", "true");
- // Auto commit interval, kafka would commit offset at this interval.
- props.put("auto.commit.interval.ms", "101");
- // This is how to control number of records being read in each poll
- props.put("max.partition.fetch.bytes", "135");
- // Set this if you want to always read from beginning.
- // props.put("auto.offset.reset", "earliest");
- props.put("heartbeat.interval.ms", "3000");
- props.put("session.timeout.ms", "6001");
- props.put("key.deserializer",
- "org.apache.kafka.common.serialization.StringDeserializer");
- props.put("value.deserializer",
- "org.apache.kafka.common.serialization.StringDeserializer");
- return new KafkaConsumer<String, String>(props);
- }
- private static void processRecords(KafkaConsumer<String, String> consumer) {
- while (true) {
- ConsumerRecords<String, String> records = consumer.poll(100);
- long lastOffset = 0;
- for (ConsumerRecord<String, String> record : records) {
- System.out.printf("\n\roffset = %d, key = %s, value = %s", record.offset(), record.key(), record.value());
- lastOffset = record.offset();
- }
- System.out.println("lastOffset read: " + lastOffset);
- process();
- }
- }
- private static void process() throws InterruptedException {
- // create some delay to simulate processing of the message.
- Thread.sleep(20);
- }
- }
复制代码 2. At-least-once kafka consumer
实现最少一次消费语义的消费者也很简单。
1). 设置enable.auto.commit为false
2). 消息处理完之后手动调用consumer.commitSync()
这种方式就是要手动在处理完该次poll得到消息之后,调用offset异步提交函数consumer.commitSync()。建议是消费者内部实现密等,来避免消费者重复处理消息进而得到重复结果。最多一次发生的场景是消费者的消息处理完并输出到结果库(也可能是部分处理完),但是offset还没提交,这个时候消费者挂掉了,再重启的时候会重新消费并处理消息。
代码如下:
- public class AtLeastOnceConsumer {
- public static void main(String[] str) throws InterruptedException {
- System.out.println("Starting AutoOffsetGuranteedAtLeastOnceConsumer ...");
- execute();
- }
- private static void execute() throws InterruptedException {
- KafkaConsumer<String, String> consumer = createConsumer();
- // Subscribe to all partition in that topic. 'assign' could be used here
- // instead of 'subscribe' to subscribe to specific partition.
- consumer.subscribe(Arrays.asList("normal-topic"));
- processRecords(consumer);
- }
- private static KafkaConsumer<String, String> createConsumer() {
- Properties props = new Properties();
- props.put("bootstrap.servers", "localhost:9092");
- String consumeGroup = "cg1";
- props.put("group.id", consumeGroup);
- // Set this property, if auto commit should happen.
- props.put("enable.auto.commit", "true");
- // Make Auto commit interval to a big number so that auto commit does not happen,
- // we are going to control the offset commit via consumer.commitSync(); after processing // message.
- props.put("auto.commit.interval.ms", "999999999999");
- // This is how to control number of messages being read in each poll
- props.put("max.partition.fetch.bytes", "135");
- props.put("heartbeat.interval.ms", "3000");
- props.put("session.timeout.ms", "6001");
- props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
- props.put("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
- return new KafkaConsumer<String, String>(props);
- }
- private static void processRecords(KafkaConsumer<String, String> consumer) throws {
- while (true) {
- ConsumerRecords<String, String> records = consumer.poll(100);
- long lastOffset = 0;
- for (ConsumerRecord<String, String> record : records) {
- System.out.printf("\n\roffset = %d, key = %s, value = %s", record.offset(), record.key(), record.value());
- lastOffset = record.offset();
- }
- System.out.println("lastOffset read: " + lastOffset);
- process();
- // Below call is important to control the offset commit. Do this call after you
- // finish processing the business process.
- consumer.commitSync();
- }
- }
- private static void process() throws InterruptedException {
- // create some delay to simulate processing of the record.
- Thread.sleep(20);
- }
- }
复制代码 3. 使用subscribe实现Exactly-once
使用subscribe实现Exactly-once 很简单,具体思路如下:
1). 将enable.auto.commit设置为false。
2). 不调用consumer.commitSync()。
3). 使用subcribe定于topic。
4). 实现一个ConsumerRebalanceListener,在该listener内部实行
consumer.seek(topicPartition,offset),从指定的topic/partition的offset处启动。
5). 在处理消息的时候,要同时控制保存住每个消息的offset。以原子事件的方式保存offset和处理的消息结果。传统数据库实现原子事件比较简单。但对于非传统数据库,好比hdfs或者nosql,为了实现这个目标,只能将offset与消息保存在同一行。
6). 实现密等,作为保护层。
代码如下:
- public class ExactlyOnceDynamicConsumer {
- private static OffsetManager offsetManager = new OffsetManager("storage2");
- public static void main(String[] str) throws InterruptedException {
- System.out.println("Starting ExactlyOnceDynamicConsumer ...");
- readMessages();
- }
- private static void readMessages() throws InterruptedException {
- KafkaConsumer<String, String> consumer = createConsumer();
- // Manually controlling offset but register consumer to topics to get dynamically
- // assigned partitions. Inside MyConsumerRebalancerListener use
- // consumer.seek(topicPartition,offset) to control offset which messages to be read.
- consumer.subscribe(Arrays.asList("normal-topic"),
- new MyConsumerRebalancerListener(consumer));
- processRecords(consumer);
- }
- private static KafkaConsumer<String, String> createConsumer() {
- Properties props = new Properties();
- props.put("bootstrap.servers", "localhost:9092");
- String consumeGroup = "cg3";
- props.put("group.id", consumeGroup);
- // Below is a key setting to turn off the auto commit.
- props.put("enable.auto.commit", "false");
- props.put("heartbeat.interval.ms", "2000");
- props.put("session.timeout.ms", "6001");
- // Control maximum data on each poll, make sure this value is bigger than the maximum // single message size
- props.put("max.partition.fetch.bytes", "140");
- props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
- props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
- return new KafkaConsumer<String, String>(props);
- }
- private static void processRecords(KafkaConsumer<String, String> consumer) {
- while (true) {
- ConsumerRecords<String, String> records = consumer.poll(100);
- for (ConsumerRecord<String, String> record : records) {
- System.out.printf("offset = %d, key = %s, value = %s\n", record.offset(), record.key(), record.value());
- // Save processed offset in external storage.
- offsetManager.saveOffsetInExternalStore(record.topic(), record.partition(), record.offset());
- }
- }
- }
- }
- public class MyConsumerRebalancerListener implements org.apache.kafka.clients.consumer.ConsumerRebalanceListener {
- private OffsetManager offsetManager = new OffsetManager("storage2");
- private Consumer<String, String> consumer;
- public MyConsumerRebalancerListener(Consumer<String, String> consumer) {
- this.consumer = consumer;
- }
- public void onPartitionsRevoked(Collection<TopicPartition> partitions) {
- for (TopicPartition partition : partitions) {
- offsetManager.saveOffsetInExternalStore(partition.topic(), partition.partition(), consumer.position(partition));
- }
- }
- public void onPartitionsAssigned(Collection<TopicPartition> partitions) {
- for (TopicPartition partition : partitions) {
- consumer.seek(partition, offsetManager.readOffsetFromExternalStore(partition.topic(), partition.partition()));
- }
- }
- }
- /**
- * The partition offset are stored in an external storage. In this case in a local file system where
- * program runs.
- */
- public class OffsetManager {
- private String storagePrefix;
- public OffsetManager(String storagePrefix) {
- this.storagePrefix = storagePrefix;
- }
- /**
- * Overwrite the offset for the topic in an external storage.
- *
- * @param topic - Topic name.
- * @param partition - Partition of the topic.
- * @param offset - offset to be stored.
- */
- void saveOffsetInExternalStore(String topic, int partition, long offset) {
- try {
- FileWriter writer = new FileWriter(storageName(topic, partition), false);
- BufferedWriter bufferedWriter = new BufferedWriter(writer);
- bufferedWriter.write(offset + "");
- bufferedWriter.flush();
- bufferedWriter.close();
- } catch (Exception e) {
- e.printStackTrace();
- throw new RuntimeException(e);
- }
- }
- /**
- * @return he last offset + 1 for the provided topic and partition.
- */
- long readOffsetFromExternalStore(String topic, int partition) {
- try {
- Stream<String> stream = Files.lines(Paths.get(storageName(topic, partition)));
- return Long.parseLong(stream.collect(Collectors.toList()).get(0)) + 1;
- } catch (Exception e) {
- e.printStackTrace();
- }
- return 0;
- }
- private String storageName(String topic, int partition) {
- return storagePrefix + "-" + topic + "-" + partition;
- }
- }
复制代码 4. 使用assign实现Exactly-once
使用assign实现Exactly-once 也很简单,具体思路如下:
1). 将enable.auto.commit设置为false。
2). 不调用consumer.commitSync()。
3). 调用assign注册kafka消费者到kafka
4). 初次启动的时候,调用consumer.seek(topicPartition,offset)来指定offset。
5). 在处理消息的时候,要同时控制保存住每个消息的offset。以原子事件的方式保存offset和处理的消息结果。传统数据库实现原子事件比较简单。但对于非传统数据库,好比hdfs或者nosql,为了实现这个目标,只能将offset与消息保存在同一行。
6). 实现密等,作为保护层。
代码如下:
- public class ExactlyOnceStaticConsumer {
- private static OffsetManager offsetManager = new OffsetManager("storage1");
- public static void main(String[] str) throws InterruptedException, IOException {
- System.out.println("Starting ExactlyOnceStaticConsumer ...");
- readMessages();
- }
- private static void readMessages() throws InterruptedException, IOException {
- KafkaConsumer<String, String> consumer = createConsumer();
- String topic = "normal-topic";
- int partition = 1;
- TopicPartition topicPartition =
- registerConsumerToSpecificPartition(consumer, topic, partition);
- // Read the offset for the topic and partition from external storage.
- long offset = offsetManager.readOffsetFromExternalStore(topic, partition);
- // Use seek and go to exact offset for that topic and partition.
- consumer.seek(topicPartition, offset);
- processRecords(consumer);
- }
- private static KafkaConsumer<String, String> createConsumer() {
- Properties props = new Properties();
- props.put("bootstrap.servers", "localhost:9092");
- String consumeGroup = "cg2";
- props.put("group.id", consumeGroup);
- // Below is a key setting to turn off the auto commit.
- props.put("enable.auto.commit", "false");
- props.put("heartbeat.interval.ms", "2000");
- props.put("session.timeout.ms", "6001");
- // control maximum data on each poll, make sure this value is bigger than the maximum // single message size
- props.put("max.partition.fetch.bytes", "140");
- props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
- props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
- return new KafkaConsumer<String, String>(props);
- }
- /**
- * Manually listens for specific topic partition. But, if you are looking for example of how to * dynamically listens to partition and want to manually control offset then see
- * ExactlyOnceDynamicConsumer.java
- */
- private static TopicPartition registerConsumerToSpecificPartition(
- KafkaConsumer<String, String> consumer, String topic, int partition) {
- TopicPartition topicPartition = new TopicPartition(topic, partition);
- List<TopicPartition> partitions = Arrays.asList(topicPartition);
- consumer.assign(partitions);
- return topicPartition;
- }
- /**
- * Process data and store offset in external store. Best practice is to do these operations
- * atomically.
- */
- private static void processRecords(KafkaConsumer<String, String> consumer) throws {
- while (true) {
- ConsumerRecords<String, String> records = consumer.poll(100);
- for (ConsumerRecord<String, String> record : records) {
- System.out.printf("offset = %d, key = %s, value = %s\n", record.offset(), record.key(), record.value());
- offsetManager.saveOffsetInExternalStore(record.topic(), record.partition(), record.offset());
- }
- }
- }
- }
复制代码 免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |