一、前言
在AI大模子百花齐放的时代,很多人都对新兴技能充满了热情,都想尝试一下。但是,现实上要入门AI技能的门槛非常高。除了须要高端装备,还须要面临复杂的部署和安装过程,这让很多人望而却步。不外,随着开源技能的不断进步,使得入门AI变得越来越容易。通过利用**Ollama**,您可以快速体验大语言模子的乐趣,不再须要担心繁琐的设置和安装过程。另外,通过集成Spring AI,让更多Java爱好者能便捷的将AI能力集成到项目中,接下来,跟随我的脚步,一起来体验一把。
二、术语
2.1、Spring AI
是 Spring 生态系统的一个新项目,它简化了 Java 中 AI 应用程序的创建。它提供以下功能:
- 支持所有重要模子提供商,例如 OpenAI、Microsoft、Amazon、Google 和 Huggingface。
- 支持的模子类型包罗“谈天”和“文本到图像”,另有更多模子类型正在开发中。
- 跨 AI 提供商的可移植 API,用于谈天和嵌入模子。
- 支持同步和流 API 选项。
- 支持下拉访问模子特定功能。
- AI 模子输出到 POJO 的映射。
2.2、Ollama
是一个强大的框架,用于在 Docker 容器中部署 LLM(大型语言模子)。它的重要功能是在 Docker 容器内部署和管理 LLM 的促进者,使该过程变得简单。它可以资助用户快速在本地运行大模子,通过简单的安装指令,用户可以执行一条命令就在本地运行开源大型语言模子。
Ollama 支持 GPU/CPU 混合模式运行,允许用户根据本身的硬件条件(如 GPU、显存、CPU 和内存)选择不同量化版本的大模子。它提供了一种方式,使得纵然在没有高性能 GPU 的装备上,也可以或许运行大型模子。
三、前置条件
3.1、JDK 17+
下载地点:https://www.oracle.com/java/technologies/downloads/#jdk17-windows
类文件具有错误的版本 61.0, 应为 52.0
3.2、创建Maven项目
SpringBoot版本为3.2.3
- <parent>
- <groupId>org.springframework.boot</groupId>
- <artifactId>spring-boot-starter-parent</artifactId>
- <version>3.2.3</version>
- <relativePath/> <!-- lookup parent from repository -->
- </parent>
复制代码 3.3、导入Maven依赖包
- <dependency>
- <groupId>org.projectlombok</groupId>
- <artifactId>lombok</artifactId>
- <optional>true</optional>
- </dependency>
- <dependency>
- <groupId>ch.qos.logback</groupId>
- <artifactId>logback-core</artifactId>
- </dependency>
- <dependency>
- <groupId>ch.qos.logback</groupId>
- <artifactId>logback-classic</artifactId>
- </dependency>
- <dependency>
- <groupId>cn.hutool</groupId>
- <artifactId>hutool-core</artifactId>
- <version>5.8.24</version>
- </dependency>
- <dependency>
- <groupId>org.springframework.ai</groupId>
- <artifactId>spring-ai-openai-spring-boot-starter</artifactId>
- <version>0.8.0</version>
- </dependency>
- <dependency>
- <groupId>org.springframework.ai</groupId>
- <artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
- <version>0.8.0</version>
- </dependency>
复制代码 3.4、 科学上网的软件
3.5、 安装Ollama及部署Qwen模子
拜见:开源模子应用落地-工具利用篇-Ollama(六)-CSDN博客
四、技能实现
4.1、调用Open AI
4.1.1、非流式调用
- @RequestMapping("/chat")
- public String chat(){
- String systemPrompt = "{prompt}";
- SystemPromptTemplate systemPromptTemplate = new SystemPromptTemplate(systemPrompt);
- String userPrompt = "广州有什么特产?";
- Message userMessage = new UserMessage(userPrompt);
- Message systemMessage = systemPromptTemplate.createMessage(MapUtil.of("prompt", "you are a helpful AI assistant"));
- Prompt prompt = new Prompt(List.of(userMessage, systemMessage));
- List<Generation> response = openAiChatClient.call(prompt).getResults();
- String result = "";
- for (Generation generation : response){
- String content = generation.getOutput().getContent();
- result += content;
- }
- return result;
- }
复制代码 调用结果:
4.1.2、流式调用
- @RequestMapping("/stream")
- public SseEmitter stream(HttpServletResponse response){
- response.setContentType("text/event-stream");
- response.setCharacterEncoding("UTF-8");
- SseEmitter emitter = new SseEmitter();
- String systemPrompt = "{prompt}";
- SystemPromptTemplate systemPromptTemplate = new SystemPromptTemplate(systemPrompt);
- String userPrompt = "广州有什么特产?";
- Message userMessage = new UserMessage(userPrompt);
- Message systemMessage = systemPromptTemplate.createMessage(MapUtil.of("prompt", "you are a helpful AI assistant"));
- Prompt prompt = new Prompt(List.of(userMessage, systemMessage));
- openAiChatClient.stream(prompt).subscribe(x -> {
- try {
- log.info("response: {}",x);
- List<Generation> generations = x.getResults();
- if(CollUtil.isNotEmpty(generations)){
- for(Generation generation:generations){
- AssistantMessage assistantMessage = generation.getOutput();
- String content = assistantMessage.getContent();
- if(StringUtils.isNotEmpty(content)){
- emitter.send(content);
- }else{
- if(StringUtils.equals(content,"null"))
- emitter.complete(); // Complete the SSE connection
- }
- }
- }
- } catch (Exception e) {
- emitter.complete();
- log.error("流式返回结果异常",e);
- }
- });
- return emitter;
- }
复制代码 流式输出返回的数据结构:
调用结果:
4.2、调用Ollama API
Spring封装的很好,根本和调用OpenAI的代码一致
4.2.1、非流式调用
- @RequestMapping("/chat")
- public String chat(){
- String systemPrompt = "{prompt}";
- SystemPromptTemplate systemPromptTemplate = new SystemPromptTemplate(systemPrompt);
- String userPrompt = "广州有什么特产?";
- Message userMessage = new UserMessage(userPrompt);
- Message systemMessage = systemPromptTemplate.createMessage(MapUtil.of("prompt", "you are a helpful AI assistant"));
- Prompt prompt = new Prompt(List.of(userMessage, systemMessage));
- List<Generation> response = ollamaChatClient.call(prompt).getResults();
- String result = "";
- for (Generation generation : response){
- String content = generation.getOutput().getContent();
- result += content;
- }
- return result;
- }
复制代码 调用结果:
Ollam的server.log输出
4.2.2、流式调用
- @RequestMapping("/stream")
- public SseEmitter stream(HttpServletResponse response){
- response.setContentType("text/event-stream");
- response.setCharacterEncoding("UTF-8");
- SseEmitter emitter = new SseEmitter();
- String systemPrompt = "{prompt}";
- SystemPromptTemplate systemPromptTemplate = new SystemPromptTemplate(systemPrompt);
- String userPrompt = "广州有什么特产?";
- Message userMessage = new UserMessage(userPrompt);
- Message systemMessage = systemPromptTemplate.createMessage(MapUtil.of("prompt", "you are a helpful AI assistant"));
- Prompt prompt = new Prompt(List.of(userMessage, systemMessage));
- ollamaChatClient.stream(prompt).subscribe(x -> {
- try {
- log.info("response: {}",x);
- List<Generation> generations = x.getResults();
- if(CollUtil.isNotEmpty(generations)){
- for(Generation generation:generations){
- AssistantMessage assistantMessage = generation.getOutput();
- String content = assistantMessage.getContent();
- if(StringUtils.isNotEmpty(content)){
- emitter.send(content);
- }else{
- if(StringUtils.equals(content,"null"))
- emitter.complete(); // Complete the SSE connection
- }
- }
- }
- } catch (Exception e) {
- emitter.complete();
- log.error("流式返回结果异常",e);
- }
- });
- return emitter;
- }
复制代码 调用结果:
五、附带说明
5.1、OpenAiChatClient默认利用gpt-3.5-turbo模子
5.2、流式输出如何关闭连接
不能判断是否为’'(即空字符串),以下代码将提前关闭连接
流式输出会返回’'的环境
应该在返回内容为字符串null的时候关闭
5.3、设置文件中指定的Ollama的模子参数,要和运行的模子一致
5.4、OpenAI调用完整代码
- import cn.hutool.core.collection.CollUtil;
- import cn.hutool.core.map.MapUtil;
- import jakarta.servlet.http.HttpServletResponse;
- import lombok.extern.slf4j.Slf4j;
- import org.apache.commons.lang3.StringUtils;
- import org.springframework.ai.chat.Generation;
- import org.springframework.ai.chat.messages.AssistantMessage;
- import org.springframework.ai.chat.messages.Message;
- import org.springframework.ai.chat.messages.UserMessage;
- import org.springframework.ai.chat.prompt.Prompt;
- import org.springframework.ai.chat.prompt.SystemPromptTemplate;
- import org.springframework.ai.openai.OpenAiChatClient;
- import org.springframework.beans.factory.annotation.Autowired;
- import org.springframework.web.bind.annotation.RequestMapping;
- import org.springframework.web.bind.annotation.RestController;
- import org.springframework.web.servlet.mvc.method.annotation.SseEmitter;
- import java.util.List;
- @Slf4j
- @RestController
- @RequestMapping("/api")
- public class OpenaiTestController {
- @Autowired
- private OpenAiChatClient openAiChatClient;
- // http://localhost:7777/api/chat
- @RequestMapping("/chat")
- public String chat(){
- String systemPrompt = "{prompt}";
- SystemPromptTemplate systemPromptTemplate = new SystemPromptTemplate(systemPrompt);
- String userPrompt = "广州有什么特产?";
- Message userMessage = new UserMessage(userPrompt);
- Message systemMessage = systemPromptTemplate.createMessage(MapUtil.of("prompt", "you are a helpful AI assistant"));
- Prompt prompt = new Prompt(List.of(userMessage, systemMessage));
- List<Generation> response = openAiChatClient.call(prompt).getResults();
- String result = "";
- for (Generation generation : response){
- String content = generation.getOutput().getContent();
- result += content;
- }
- return result;
- }
- @RequestMapping("/stream")
- public SseEmitter stream(HttpServletResponse response){
- response.setContentType("text/event-stream");
- response.setCharacterEncoding("UTF-8");
- SseEmitter emitter = new SseEmitter();
- String systemPrompt = "{prompt}";
- SystemPromptTemplate systemPromptTemplate = new SystemPromptTemplate(systemPrompt);
- String userPrompt = "广州有什么特产?";
- Message userMessage = new UserMessage(userPrompt);
- Message systemMessage = systemPromptTemplate.createMessage(MapUtil.of("prompt", "you are a helpful AI assistant"));
- Prompt prompt = new Prompt(List.of(userMessage, systemMessage));
- openAiChatClient.stream(prompt).subscribe(x -> {
- try {
- log.info("response: {}",x);
- List<Generation> generations = x.getResults();
- if(CollUtil.isNotEmpty(generations)){
- for(Generation generation:generations){
- AssistantMessage assistantMessage = generation.getOutput();
- String content = assistantMessage.getContent();
- if(StringUtils.isNotEmpty(content)){
- emitter.send(content);
- }else{
- if(StringUtils.equals(content,"null"))
- emitter.complete(); // Complete the SSE connection
- }
- }
- }
- } catch (Exception e) {
- emitter.complete();
- log.error("流式返回结果异常",e);
- }
- });
- return emitter;
- }
- }
复制代码 5.5、Ollama调用完整代码
- import cn.hutool.core.collection.CollUtil;
- import cn.hutool.core.map.MapUtil;
- import jakarta.servlet.http.HttpServletResponse;
- import lombok.extern.slf4j.Slf4j;
- import org.apache.commons.lang3.StringUtils;
- import org.springframework.ai.chat.Generation;
- import org.springframework.ai.chat.messages.AssistantMessage;
- import org.springframework.ai.chat.messages.Message;
- import org.springframework.ai.chat.messages.UserMessage;
- import org.springframework.ai.chat.prompt.Prompt;
- import org.springframework.ai.chat.prompt.SystemPromptTemplate;
- import org.springframework.ai.ollama.OllamaChatClient;
- import org.springframework.beans.factory.annotation.Autowired;
- import org.springframework.web.bind.annotation.RequestMapping;
- import org.springframework.web.bind.annotation.RestController;
- import org.springframework.web.servlet.mvc.method.annotation.SseEmitter;
- import java.util.List;
- @Slf4j
- @RestController
- @RequestMapping("/api")
- public class OllamaTestController {
- @Autowired
- private OllamaChatClient ollamaChatClient;
- @RequestMapping("/chat")
- public String chat(){
- String systemPrompt = "{prompt}";
- SystemPromptTemplate systemPromptTemplate = new SystemPromptTemplate(systemPrompt);
- String userPrompt = "广州有什么特产?";
- Message userMessage = new UserMessage(userPrompt);
- Message systemMessage = systemPromptTemplate.createMessage(MapUtil.of("prompt", "you are a helpful AI assistant"));
- Prompt prompt = new Prompt(List.of(userMessage, systemMessage));
- List<Generation> response = ollamaChatClient.call(prompt).getResults();
- String result = "";
- for (Generation generation : response){
- String content = generation.getOutput().getContent();
- result += content;
- }
- return result;
- }
- @RequestMapping("/stream")
- public SseEmitter stream(HttpServletResponse response){
- response.setContentType("text/event-stream");
- response.setCharacterEncoding("UTF-8");
- SseEmitter emitter = new SseEmitter();
- String systemPrompt = "{prompt}";
- SystemPromptTemplate systemPromptTemplate = new SystemPromptTemplate(systemPrompt);
- String userPrompt = "广州有什么特产?";
- Message userMessage = new UserMessage(userPrompt);
- Message systemMessage = systemPromptTemplate.createMessage(MapUtil.of("prompt", "you are a helpful AI assistant"));
- Prompt prompt = new Prompt(List.of(userMessage, systemMessage));
- ollamaChatClient.stream(prompt).subscribe(x -> {
- try {
- log.info("response: {}",x);
- List<Generation> generations = x.getResults();
- if(CollUtil.isNotEmpty(generations)){
- for(Generation generation:generations){
- AssistantMessage assistantMessage = generation.getOutput();
- String content = assistantMessage.getContent();
- if(StringUtils.isNotEmpty(content)){
- emitter.send(content);
- }else{
- if(StringUtils.equals(content,"null"))
- emitter.complete(); // Complete the SSE connection
- }
- }
- }
- } catch (Exception e) {
- emitter.complete();
- log.error("流式返回结果异常",e);
- }
- });
- return emitter;
- }
- }
复制代码 5.6、核心设置
- spring:
- ai:
- openai:
- api-key: sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
- ollama:
- base-url: http://localhost:11434
- chat:
- model: qwen:1.8b-chat
复制代码 5.7、启动类
- import org.springframework.boot.SpringApplication;
- import org.springframework.boot.autoconfigure.SpringBootApplication;
- @SpringBootApplication
- public class AiApplication {
- public static void main(String[] args) {
- System.setProperty("http.proxyHost","127.0.0.1");
- System.setProperty("http.proxyPort","7078"); // 修改为你代理软件的端口
- System.setProperty("https.proxyHost","127.0.0.1");
- System.setProperty("https.proxyPort","7078"); // 同理
- SpringApplication.run(AiApplication.class, args);
- }
- }
复制代码 免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |