使用傅里叶变换进行图像边缘检测
本日我们介绍通过傅里叶变换求得图像的边缘
什么是傅立叶变换?
简单来说,傅里叶变换是将输入的信号分解成指定样式的构造块。例如,首先通过叠加具有不同频率的两个或更多个正弦函数而生成信号f(x),之后,仅查看f(x)的图像缺无法了解使用哪种或多少原始函数来生成f(x)。
这就是傅立叶变换最神奇的地方。将f(x)函数通过一个傅立叶变换器,我们就可以得到一个新的函数F(x)。F(x)的是最初生成f(x)函数的频率图。因此,通过查看F(x)我们就可以得到用于生成f(x)函数的原始频率。实际上,傅立叶变换可以显现信号的紧张特性,即其频率分量。
例如下图,该图中有f(x)函数合成时的两个不同频率的原函数和对应的傅里叶变换结果F(x)。
生成该图片的代码如下:
- Fs = 150.0; #采样率
- Ts = 1.0 / Fs; #采样间隔
- t = np.arange(0,1,Ts)#时间向量
- ff1 = 5; #信号频率1
- ff2 = 10; #信号2的频率
- y = np.sin(2 * np.pi * ff1 * t)+ np.sin(3 * np.pi * ff2 * t)
复制代码 从图中可以看出,由于原始函数是由两个不同频率的输入函数组成的,因此颠末傅立叶变换后的相应频率图表现了两个不同频率的尖峰。
这是对傅立叶变换的比力简单的表明。它是一个非常复杂但非常有用的功能,在数学,物理和计算机视觉中得到了广泛的应用。
图像处理中的傅立叶变换
如今我们知道了傅里叶变换对信号处理的作用。它将输入信号从时域转换到频域。
但是它在图像处理中有什么用?它将输入图像从空间域转换为频域。换句话说,如果要在进行傅立叶变换后绘制图像,我们将看到的只是高频和低频的频谱图。高频偏向图像中心,而低频偏向周围。具体形式如下图所示。
上面临图像进行傅里叶变换的结果可以通过如下代码实现:
- import numpy as np
- import cv2 from matplotlib
- import pyplot as plt
- img = cv2.imread('scenery.jpg', 0)
- dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
- dft_shift = np.fft.fftshift(dft) magnitude_spectrum = 20 * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))
- plt.subplot(2, 2, 1), plt.imshow(img, cmap='gray')
- plt.title('Input Image'), plt.xticks([]), plt.yticks([])
- plt.subplot(2, 2, 2), plt.imshow(magnitude_spectrum, cmap='gray')
- plt.title('After FFT'), plt.xticks([]), plt.yticks([])
复制代码 如今我们可以对图像进行FFT(快速傅里叶变换)变换了,并且可以使用转换后的结果进行多种利用:
- 边缘检测—使用高通滤波器或带通滤波器
- 降噪—使用低通滤波器
- 图像含糊-使用低通滤镜
- 特性提取(在某些情况下)-过滤器和其他一些openCV工具的混淆搭配
HPF滤波器
如前所述,在颠末FFT变换的图像中,在中心处发现低频,而在周围散布了高频,我们可以创建一个掩码数组,该掩码数组的中心是一个圆,其余全部为零。当将此掩码数组作用于原始图像时,所得图像将仅具有低频。由于高频对应于空间域中的边缘,这样就可以实现图像中的边缘检测。这个掩码数组就时HPF滤波器。
我们可以通过如下代码生成HPF滤波器
- mask = np.ones((rows, cols, 2), np.uint8)
- r = 80 center = [crow, ccol]
- x, y = np.ogrid[:rows, :cols]
- mask_area = (x - center[0]) ** 2 + (y - center[1]) ** 2 <= r*r
复制代码 尽管可以选择使用多种范例的过滤器,但是重要使用三种范例的过滤器:
- 高通滤波器(HPF)
- 低通滤波器(LPF)
- 带通滤波器(BPF)
使用openCV和NumPy的高通滤波器进行边缘检测
在计算机视觉领域中,检测图像边缘非常有用。一旦我们可以提取图像中的边缘,就可以将该知识用于特性提取或模式检测。
图像中的边缘通常由高频组成。因此,在对图像进行FFT(快速傅立叶变换)后,我们需要对FFT变换后的图像应用高通滤波器。该滤波器会阻止所有低频,仅允许高频通过。最后,我们对颠末了滤波器的图像进行逆FFT,就会得到原始图像中一些显着的边缘特性。
接下来,我们使用汽车的图像进行此实行,这个过程的代码如下所示:
- rows, cols = img.shape crow, ccol = int(rows / 2), int(cols / 2) # center # Circular HPF mask, center circle is 0, remaining all ones mask = np.ones((rows, cols, 2), np.uint8)
- r = 80 center = [crow, ccol]
- x, y = np.ogrid[:rows, :cols]
- mask_area = (x - center[0]) ** 2 + (y - center[1]) ** 2 <= r*r
- # apply mask and inverse DFT fshift = dft_shift * mask fshift_mask_mag = 2000 * np.log(cv2.magnitude(fshift[:, :, 0], fshift[:, :, 1])) f_ishift = np.fft.ifftshift(fshift) img_back = cv2.idft(f_ishift) img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])plt.subplot(2, 2, 1), plt.imshow(img, cmap='gray') plt.title('Input Image'), plt.xticks([]), plt.yticks([])plt.subplot(2, 2, 2), plt.imshow(magnitude_spectrum, cmap='gray') plt.title('After FFT'), plt.xticks([]), plt.yticks([])plt.subplot(2, 2, 3), plt.imshow(fshift_mask_mag, cmap='gray') plt.title('FFT + Mask'), plt.xticks([]), plt.yticks([])plt.subplot(2, 2, 4), plt.imshow(img_back, cmap='gray') plt.title('After FFT Inverse'), plt.xticks([]), plt.yticks([])plt.show()
复制代码 步伐运行结果如下图所示:

可以看出,高通滤波器阻止了所有的低频信号,并且仅允许高频通过。由于边缘通常是由高频信号构成的,因此可以在最后的图像中找到原图像的边缘信息。
如果对傅里叶变换感兴趣,可以观看如下两个视频:
https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
https://www.youtube.com/watch?time_continue=1&v=r18Gi8lSkfM
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |