Ascend C是CANN针对算子开辟场景推出的编程语言,原生支持C和C++标准规范,兼具开辟效率和运行性能。利用Ascend C,开辟者可以基于昇腾AI硬件,高效的实现自定义的创新算法。
目前已经有越来越多的开辟者利用Ascend C,我们将通过几期“Ascend C算子性能优化”专题分享,围绕开辟者最为关心的算子性能优化环节,先容Ascend C算子常用的优化本领,资助开辟者自主构建出更优性能的算子。专题内容将围绕流水优化、搬运优化、内存优化、API利用优化以及Tiling优化等优化本领,从方案讲授、优化案例、性能对比等多角度展开先容。
上期内容分享了《Ascend C算子性能优化实用本领01——流水优化》,本期您将从内存优化角度,了解到一些实用的内存优化本领:
- 通过Unified Buffer融合实现一连vector计算
- 通过L0C Buffer数据暂存实现高效的矩阵乘结果累加
- 较小矩阵长驻L1 Buffer,仅分次搬运较大矩阵
- 通过BT Buffer实现高效的bias计算
- 通过FP Buffer存放量化参数实现高效随路量化
昇腾AI处置惩罚器存储单位简介
AI处置惩罚器中的计算资源要想发挥强劲算力,必要条件是包管输入数据能够实时准确地出现在计算单位中,需要经心设计存储系统,包管计算单位所需的数据供应。
昇腾AI处置惩罚器中的AI Core包含多级内部存储,AI Core需要把外部存储中的数据加载到内部存储中,才气完成相应的计算。AI Core的主要内部存储包罗:
- L1 Buffer:L1缓冲区,通用内部存储,是AI Core内比较大的一块数据中转区,可暂存AI Core中需要反复利用的一些数据从而减少从总线读写的次数。
- L0A Buffer / L0B Buffer:Cube指令的输入。
- L0C Buffer:Cube指令的输出,但举行累加计算的时间,也是输入的一部门。
- Unified Buffer:统一缓冲区,向量和标量计算的输入和输出。
为了配合AI Core中的数据传输和搬运,AI Core中还包含MTE(Memory Transfer Engine,存储转换引擎)搬运单位,在搬运过程中可实行随路数据格式/类型转换。
图 1AI Core架构图
除L1 Buffer(L1缓冲区),L0 Buffer(L0缓冲区),Unified Buffer(统一缓冲区)这些基本的存储单位外,某些采用AI Core分离架构的昇腾AI处置惩罚器还会增长BT Buffer和FP Buffer这两个Buffer。AI Core分离架构将AI Core拆成矩阵计算(AI Cube,AIC)和向量计算(AI Vector,AIV)两个独立的核,每个核都有本身的Scalar单位,能独立加载本身的代码段,从而实现矩阵计算与向量计算的解耦,在系统软件的统一调度下互相配合达到计算效率优化的效果。
- BT Buffer:BiasTable Buffer,用于存放Bias。
- FP Buffer:Fixpipe Buffer,用于存放量化参数、Relu参数等。
图 2AI Core架构图(分离架构)
通过UB Buffer融合实现一连vector计算
算子实现中涉及多次vector计算,且前一次计算输出是后一次计算输入的环境下,可将前一次计算输出暂存在UB(Unified Buffer)上直接作为下一次计算的输入,不需要将前一次的计算输出从UB搬运到GM后再从GM搬运到UB。这种UB Buffer融合的方式可以减少搬入搬出次数,实现一连vector计算,提拔内存利用效率。数据流图对比如下:
图3数据流图对比
 举个例子,以下算子的计算逻辑为举行Exp计算后再举行Abs计算。计算过程中先把源操作数从GM搬运到UB举行Exp计算,Exp计算完成后将Exp的结果从UB搬运到GM;再从GM中把Exp的结果搬运到UB上作为Abs计算的输入,Abs计算完成后将目标操作数结果从UB搬运到GM。整个过程从GM搬进搬出共4次。当需要举行的vector计算为n次时,从GM搬进搬出共需要2n次。
- class KernelSample {
- public:
- __aicore__ inline KernelSample() {}
- __aicore__ inline void Init(__gm__ uint8_t* src0Gm, __gm__ uint8_t* dstGm)
- {
- src0Global.SetGlobalBuffer((__gm__ float*)src0Gm);
- dstGlobal.SetGlobalBuffer((__gm__ float*)dstGm);
- pipe.InitBuffer(inQueueSrc0, 1, 1024 * sizeof(float));
- pipe.InitBuffer(outQueueDst, 1, 1024 * sizeof(float));
- }
- __aicore__ inline void Process()
- {
- CopyIn();
- Compute();
- CopyOut();
- CopyIn1();
- Compute1();
- CopyOut1();
- }
-
- private:
- __aicore__ inline void CopyIn()
- {
- LocalTensor<float> src0Local = inQueueSrc0.AllocTensor<float>();
- DataCopy(src0Local, src0Global, 1024);
- inQueueSrc0.EnQue(src0Local);
- }
- __aicore__ inline void Compute()
- {
- LocalTensor<float> src0Local = inQueueSrc0.DeQue<float>();
- LocalTensor<float> dstLocal = outQueueDst.AllocTensor<float>();
- Exp(dstLocal, src0Local, 1024);
- outQueueDst.EnQue<float>(dstLocal);
- inQueueSrc0.FreeTensor(src0Local);
- }
- __aicore__ inline void CopyOut()
- {
- LocalTensor<float> dstLocal = outQueueDst.DeQue<float>();
- DataCopy(dstGlobal, dstLocal, 1024);
- outQueueDst.FreeTensor(dstLocal);
- }
- __aicore__ inline void CopyIn1()
- {
- PipeBarrier<PIPE_ALL>();
- LocalTensor<float> src0Local = inQueueSrc0.AllocTensor<float>();
- DataCopy(src0Local, dstGlobal, 1024);
- inQueueSrc0.EnQue(src0Local);
- }
- __aicore__ inline void Compute1()
- {
- LocalTensor<float> src0Local = inQueueSrc0.DeQue<float>();
- LocalTensor<float> dstLocal = outQueueDst.AllocTensor<float>();
- Abs(dstLocal, src0Local, 1024);
- outQueueDst.EnQue<float>(dstLocal);
- inQueueSrc0.FreeTensor(src0Local);
- }
- __aicore__ inline void CopyOut1()
- {
- LocalTensor<float> dstLocal = outQueueDst.DeQue<float>();
- DataCopy(dstGlobal, dstLocal, 1024);
- outQueueDst.FreeTensor(dstLocal);
- }
-
- private:
- TPipe pipe;
- TQue<QuePosition::VECIN, 1> inQueueSrc0;
- TQue<QuePosition::VECOUT, 1> outQueueDst;
- GlobalTensor<float> src0Global, dstGlobal;
- };
复制代码
利用UB Buffer融合方式后,在UB上举行一连vector计算时,前一次的结果可直接作为后一次计算的输入,继续在UB上举行计算,不需要中心的搬进搬出,只需在开始计算时将源操作数搬运到UB,以及全部计算结束后将最闭幕果从UB搬运到GM,共2次搬进搬出。
- class KernelSample {
- public:
- __aicore__ inline KernelSample() {}
- __aicore__ inline void Init(__gm__ uint8_t* src0Gm, __gm__ uint8_t* dstGm)
- {
- src0Global.SetGlobalBuffer((__gm__ float*)src0Gm);
- dstGlobal.SetGlobalBuffer((__gm__ float*)dstGm);
- pipe.InitBuffer(inQueueSrc0, 1, 1024 * sizeof(float));
- pipe.InitBuffer(outQueueDst, 1, 1024 * sizeof(float));
- }
- __aicore__ inline void Process()
- {
- CopyIn();
- Compute();
- CopyOut();
- }
-
- private:
- __aicore__ inline void CopyIn()
- {
- LocalTensor<float> src0Local = inQueueSrc0.AllocTensor<float>();
- DataCopy(src0Local, src0Global, 1024);
- inQueueSrc0.EnQue(src0Local);
- }
- __aicore__ inline void Compute()
- {
- LocalTensor<float> src0Local = inQueueSrc0.DeQue<float>();
- LocalTensor<float> dstLocal = outQueueDst.AllocTensor<float>();
- Exp(dstLocal, src0Local, 1024);
- Abs(dstLocal, dstLocal, 1024);
- outQueueDst.EnQue<float>(dstLocal);
- inQueueSrc0.FreeTensor(src0Local);
- }
- __aicore__ inline void CopyOut()
- {
- LocalTensor<float> dstLocal = outQueueDst.DeQue<float>();
- DataCopy(dstGlobal, dstLocal, 1024);
- outQueueDst.FreeTensor(dstLocal);
- }
-
- private:
- TPipe pipe;
- TQue<QuePosition::VECIN, 1> inQueueSrc0;
- TQue<QuePosition::VECOUT, 1> outQueueDst;
- GlobalTensor<float> src0Global, dstGlobal;
- };
复制代码
通过L0C数据暂存实现高效的矩阵乘结果累加
算子实现中对矩阵乘的结果举行累加时(比如矩阵A1 * B1 + A2 * B2...结果的累加),可将前一次矩阵乘的结果暂存在CO1(L0C)上,调用Mmad接口实现矩阵乘结果累加。相比于每次矩阵乘的结果从CO1搬运到GM上,再搬运到UB上举行累加计算,可减少数据搬运的次数,提拔内存利用效率。
图4优化前数据流图
图5优化后数据流图
优化前,算子举行2次矩阵乘结果累加的过程如下:
- 将前一次矩阵乘的计算结果从CO1搬运到workspace上,再从workspace搬运到UB上;
- 下一次矩阵乘计算重复完成上述步调将结果搬运到UB上;
- 在UB大将2次矩阵乘的结果相加。
当需要累加n次矩阵乘时,分别增长了n次CO1->workspace、workspace->UB搬运以及n次Add运算。
- ...
- // 该样例仅做示例说明,非完整代码,省略了部分同步控制代码
- public:
- __aicore__ inline KernelSample()
- {
- aSize = m * k;
- bSize = k * n;
- cSize = m * n;
- }
- __aicore__ inline void Init(__gm__ uint8_t *a, __gm__ uint8_t *b, __gm__ uint8_t *c)
- {
- aGM.SetGlobalBuffer((__gm__ half *)a);
- bGM.SetGlobalBuffer((__gm__ half *)b);
- cGM.SetGlobalBuffer((__gm__ float *)c);
- pipe.InitBuffer(inQueueA1, 1, aSize * sizeof(half));
- pipe.InitBuffer(inQueueA2, 1, aSize * sizeof(half));
- pipe.InitBuffer(inQueueB1, 1, bSize * sizeof(half));
- pipe.InitBuffer(inQueueB2, 2, bSize * sizeof(half));
- pipe.InitBuffer(outQueueCO1, 1, cSize * sizeof(float));
- pipe.InitBuffer(inQueueSrc0, 1, cSize * sizeof(float));
- pipe.InitBuffer(inQueueSrc1, 1, cSize * sizeof(float));
- pipe.InitBuffer(outQueueDst, 1, cSize * sizeof(float));
-
- }
- __aicore__ inline void Process()
- {
- // 第一次矩阵乘计算
- CopyIn();
- SplitA();
- SplitB();
- Compute();
- // 将第一次矩阵乘的结果搬出
- CopyOut();
- // 将第一次矩阵乘的结果搬运到UB
- CopyIn1();
- // 第二次矩阵乘计算
- Compute1();
- // 将第一次矩阵乘的结果搬出
- CopyOut1();
- // 将第二次矩阵乘的结果搬运到UB
- CopyIn1();
- // 将两次矩阵乘的结果累加
- Compute2();
- CopyOut2();
- }
- private:
- __aicore__ inline void CopyIn()
- {
- LocalTensor<half> a1Local = inQueueA1.AllocTensor<half>();
- LocalTensor<half> b1Local = inQueueB1.AllocTensor<half>();
-
- Nd2NzParams dataCopyA1Params;
- dataCopyA1Params.ndNum = 1;
- dataCopyA1Params.nValue = m;
- dataCopyA1Params.dValue = k;
- dataCopyA1Params.srcNdMatrixStride = 0;
- dataCopyA1Params.srcDValue = k;
- dataCopyA1Params.dstNzC0Stride = m;
- dataCopyA1Params.dstNzNStride = 1;
- dataCopyA1Params.dstNzMatrixStride = 0;
- DataCopy(a1Local, aGM, dataCopyA1Params);
-
- Nd2NzParams dataCopyB1Params;
- dataCopyB1Params.ndNum = 1;
- dataCopyB1Params.nValue = k;
- dataCopyB1Params.dValue = n;
- dataCopyB1Params.srcNdMatrixStride = 0;
- dataCopyB1Params.srcDValue = n;
- dataCopyB1Params.dstNzC0Stride = k;
- dataCopyB1Params.dstNzNStride = 1;
- dataCopyB1Params.dstNzMatrixStride = 0;
- DataCopy(b1Local, bGM, dataCopyB1Params);
-
- inQueueA1.EnQue<half>(a1Local);
- inQueueB1.EnQue<half>(b1Local);
- }
- __aicore__ inline void SplitA()
- {
- ...
- }
- __aicore__ inline void SplitB()
- {
- ...
- }
- __aicore__ inline void Compute()
- {
- LocalTensor<half> a2Local = inQueueA2.DeQue<half>();
- LocalTensor<half> b2Local = inQueueB2.DeQue<half>();
- LocalTensor<float> c1Local = outQueueCO1.AllocTensor<float>();
- MmadParams mmadParams;
- mmadParams.m = m;
- mmadParams.n = n;
- mmadParams.k = k;
- // 矩阵乘
- Mmad(c1Local, a2Local, b2Local, mmadParams);
- outQueueCO1.EnQue<float>(c1Local);
- inQueueA2.EnQue<half>(a2Local);
- inQueueB2.EnQue<half>(b2Local);
- }
- __aicore__ inline void CopyOut()
- {
- LocalTensor<float> c1Local = outQueueCO1.DeQue<float>();
- GM_ADDR usrWorkspace = AscendC::GetUserWorkspace(workspace);
- xGm.SetGlobalBuffer((__gm__ float *)(usrWorkspace));
- FixpipeParamsV220 fixpipeParams;
- fixpipeParams.nSize = n;
- fixpipeParams.mSize = m;
- fixpipeParams.srcStride = m;
- fixpipeParams.dstStride = n;
- fixpipeParams.ndNum = 1;
- fixpipeParams.srcNdStride = 0;
- fixpipeParams.dstNdStride = 0;
- // 将矩阵乘的计算结果从CO1搬运到workspace
- Fixpipe(xGm, c1Local, fixpipeParams);
- outQueueCO1.EnQue<float>(c1Local);
- }
- __aicore__ inline void CopyIn1()
- {
- PipeBarrier<PIPE_ALL>();
- LocalTensor<float> src0Local = inQueueSrc0.AllocTensor<float>();
- // 将矩阵乘的计算结果从workspace搬运到UB
- DataCopy(src0Local, xGm, cSize);
- inQueueSrc0.EnQue<float>(src0Local);
- }
- __aicore__ inline void Compute1()
- {
- LocalTensor<half> a2Local = inQueueA2.DeQue<half>();
- LocalTensor<half> b2Local = inQueueB2.DeQue<half>();
- LocalTensor<float> c1Local = outQueueCO1.DeQue<float>();
- MmadParams mmadParams;
- mmadParams.m = m;
- mmadParams.n = n;
- mmadParams.k = k;
- // 矩阵乘
- Mmad(c1Local, a2Local, b2Local, mmadParams);
- outQueueCO1.EnQue<float>(c1Local);
- inQueueA2.FreeTensor(a2Local);
- inQueueB2.FreeTensor(b2Local);
- }
- __aicore__ inline void CopyOut1()
- {
- LocalTensor<float> c1Local = outQueueCO1.DeQue<float>();
- FixpipeParamsV220 fixpipeParams;
- fixpipeParams.nSize = n;
- fixpipeParams.mSize = m;
- fixpipeParams.srcStride = m;
- fixpipeParams.dstStride = n;
- fixpipeParams.ndNum = 1;
- fixpipeParams.srcNdStride = 0;
- fixpipeParams.dstNdStride = 0;
- // 将矩阵乘的计算结果从CO1搬运到workspace
- Fixpipe(xGm, c1Local, fixpipeParams);
- outQueueCO1.FreeTensor(c1Local);
- }
- __aicore__ inline void CopyIn2()
- {
- PipeBarrier<PIPE_ALL>();
- LocalTensor<float> src1Local = inQueueSrc1.AllocTensor<float>();
- // 将矩阵乘的计算结果从workspace搬运到UB
- DataCopy(src1Local, xGm, cSize);
- inQueueSrc1.EnQue<float>(src1Local);
- }
- __aicore__ inline void Compute2()
- {
- LocalTensor<float> src0Local = inQueueSrc0.DeQue<float>();
- LocalTensor<float> src1Local = inQueueSrc1.DeQue<float>();
- LocalTensor<float> dstLocal = outQueueDst.AllocTensor<float>();
- // 两次矩阵乘的结果相加
- Add(dstLocal, src0Local, src1Local, cSize);
- outQueueDst.EnQue<float>(dstLocal);
- inQueueSrc0.FreeTensor(src0Local);
- inQueueSrc1.FreeTensor(src1Local);
- }
- __aicore__ inline void CopyOut2()
- {
- ...
- }
- private:
- TPipe pipe;
- TQue<QuePosition::A1, 1> inQueueA1;
- TQue<QuePosition::A2, 1> inQueueA2;
- TQue<QuePosition::B1, 1> inQueueB1;
- TQue<QuePosition::B2, 1> inQueueB2;
- TQue<QuePosition::CO1, 1> outQueueCO1;
- TQue<QuePosition::VECIN, 1> inQueueSrc0;
- TQue<QuePosition::VECIN, 1> inQueueSrc1;
- TQue<QuePosition::VECOUT, 1> outQueueDst;
-
- GlobalTensor<half> aGM;
- GlobalTensor<half> bGM;
- GlobalTensor<dst_T> cGM;
- uint16_t m = 32, k = 32, n = 32;
- uint16_t aSize, bSize, cSize;
- ...
复制代码 通过优化,该算子对矩阵乘结果累加时,可将前一次矩阵乘的结果暂存在L0C上,通过Mmad接口参数cmatrixInitVal和cmatrixSource设置C矩阵的初始值 ,只调用2次Mmad接口实现2次矩阵乘结果累加。
- ...
- // 该样例仅做示例说明,非完整代码,省略了部分同步控制代码
- public:
- __aicore__ inline KernelSample()
- {
- aSize = m * k;
- bSize = k * n;
- cSize = m * n;
- }
- __aicore__ inline void Init(__gm__ uint8_t *a, __gm__ uint8_t *b, __gm__ uint8_t *c)
- {
- aGM.SetGlobalBuffer((__gm__ half *)a);
- bGM.SetGlobalBuffer((__gm__ half *)b);
- cGM.SetGlobalBuffer((__gm__ float *)c);
- pipe.InitBuffer(inQueueA1, 1, aSize * sizeof(half));
- pipe.InitBuffer(inQueueA2, 1, aSize * sizeof(half));
- pipe.InitBuffer(inQueueB1, 1, bSize * sizeof(half));
- pipe.InitBuffer(inQueueB2, 2, bSize * sizeof(half));
- pipe.InitBuffer(outQueueCO1, 1, cSize * sizeof(float));
- }
- __aicore__ inline void Process()
- {
- CopyIn();
- SplitA();
- SplitB();
- Compute();
- CopyOut();
- }
- private:
- __aicore__ inline void CopyIn()
- {
- LocalTensor<half> a1Local = inQueueA1.AllocTensor<half>();
- LocalTensor<half> b1Local = inQueueB1.AllocTensor<half>();
-
- Nd2NzParams dataCopyA1Params;
- dataCopyA1Params.ndNum = 1;
- dataCopyA1Params.nValue = m;
- dataCopyA1Params.dValue = k;
- dataCopyA1Params.srcNdMatrixStride = 0;
- dataCopyA1Params.srcDValue = k;
- dataCopyA1Params.dstNzC0Stride = m;
- dataCopyA1Params.dstNzNStride = 1;
- dataCopyA1Params.dstNzMatrixStride = 0;
- DataCopy(a1Local, aGM, dataCopyA1Params);
-
- Nd2NzParams dataCopyB1Params;
- dataCopyB1Params.ndNum = 1;
- dataCopyB1Params.nValue = k;
- dataCopyB1Params.dValue = n;
- dataCopyB1Params.srcNdMatrixStride = 0;
- dataCopyB1Params.srcDValue = n;
- dataCopyB1Params.dstNzC0Stride = k;
- dataCopyB1Params.dstNzNStride = 1;
- dataCopyB1Params.dstNzMatrixStride = 0;
- DataCopy(b1Local, bGM, dataCopyB1Params);
-
- inQueueA1.EnQue(a1Local);
- inQueueB1.EnQue(b1Local);
- }
- __aicore__ inline void SplitA()
- {
- ...
- }
- __aicore__ inline void SplitB()
- {
- ...
- }
- __aicore__ inline void Compute()
- {
- LocalTensor<half> a2Local = inQueueA2.DeQue<half>();
- LocalTensor<half> b2Local = inQueueB2.DeQue<half>();
- LocalTensor<float> c1Local = outQueueCO1.AllocTensor<float>();
- MmadParams mmadParams;
- mmadParams.m = m;
- mmadParams.n = n;
- mmadParams.k = k;
- // 第一次矩阵乘
- Mmad(c1Local, a2Local, b2Local, mmadParams);
- PipeBarrier<PIPE_M>();
- // 第二次矩阵乘累加第一次矩阵乘的结果
- mmadParams.cmatrixInitVal = false;
- Mmad(c1Local, a2Local, b2Local, c1Local, mmadParams);
- outQueueCO1.EnQue<float>(c1Local);
- inQueueA2.FreeTensor(a2Local);
- inQueueB2.FreeTensor(b2Local);
- }
- __aicore__ inline void CopyOut()
- {
- LocalTensor<float> c1Local = outQueueCO1.DeQue<float>();
- FixpipeParamsV220 fixpipeParams;
- fixpipeParams.nSize = n;
- fixpipeParams.mSize = m;
- fixpipeParams.srcStride = m;
- fixpipeParams.dstStride = n;
-
- fixpipeParams.ndNum = 1;
- fixpipeParams.srcNdStride = 0;
- fixpipeParams.dstNdStride = 0;
- Fixpipe(cGM, c1Local, fixpipeParams);
- outQueueCO1.FreeTensor(c1Local);
- }
- private:
- TPipe pipe;
- TQue<QuePosition::A1, 1> inQueueA1;
- TQue<QuePosition::A2, 1> inQueueA2;
- TQue<QuePosition::B1, 1> inQueueB1;
- TQue<QuePosition::B2, 1> inQueueB2;
- TQue<QuePosition::CO1, 1> outQueueCO1;
-
- GlobalTensor<half> aGM;
- GlobalTensor<half> bGM;
- GlobalTensor<dst_T> cGM;
- uint16_t m = 32, k = 32, n = 32;
- uint16_t aSize, bSize, cSize;
复制代码
较小矩阵长驻L1 Buffer,仅分次搬运较大矩阵
在举行cube计算时,当L1无法全载左右矩阵时,可以让较小的矩阵长驻于L1上,只分次搬运较大的矩阵,减少搬运次数。
假设L1的大小为512K,左矩阵和右矩阵的大小分别为992K、16K,数据类型为half,单次无法将左右矩阵全部载入L1中。开辟者规划的切分策略为:不切K轴,将左矩阵平均分成两块A1、A2,shape大小均为[992, 256];将右矩阵平均分成两块,shape大小均为[256, 16]。计算时的加载顺序如下:先加载A1矩阵至L1,将B1、B2依次加载并计算;然后再加载A2至L1,将B1、B2依次加载并计算。
图6优化前切分策略图示
- ...
- public:
- __aicore__ inline KernelSample()
- {
- aSize = baseM * baseK;
- bSize = baseK * baseN;
- cSize = m * n;
- }
- __aicore__ inline void Init(__gm__ uint8_t *a, __gm__ uint8_t *b, __gm__ uint8_t *c)
- {
- aGM.SetGlobalBuffer((__gm__ half *)a);
- bGM.SetGlobalBuffer((__gm__ half *)b);
- cGM.SetGlobalBuffer((__gm__ float *)c);
- pipe.InitBuffer(inQueueA1, 1, aSize * sizeof(half));
- pipe.InitBuffer(inQueueA2, 1, aSize * sizeof(half));
- pipe.InitBuffer(inQueueB1, 1, bSize * sizeof(half));
- pipe.InitBuffer(inQueueB2, 2, bSize * sizeof(half));
- pipe.InitBuffer(outQueueCO1, 1, cSize * sizeof(float));
- }
- __aicore__ inline void Process()
- {
- for (uint32_t i = 0; i < 2; i++) {
- CopyInA1(i);
- SplitA();
- for (uint32_t j = 0; j < 2; j++) {
- CopyInB1(j);
- SplitB();
- Compute(i, j);
- }
- }
- CopyOut();
- }
- private:
- __aicore__ inline void CopyInA1(uint32_t i)
- {
- LocalTensor<half> a1Local = inQueueA1.AllocTensor<half>();
- // 左矩阵a1/a2分块载入A1
- Nd2NzParams dataCopyA1Params;
- dataCopyA1Params.ndNum = 1;
- dataCopyA1Params.nValue = baseM;
- dataCopyA1Params.dValue = baseK;
- dataCopyA1Params.srcNdMatrixStride = 0;
- dataCopyA1Params.srcDValue = baseK;
- dataCopyA1Params.dstNzC0Stride = baseM;
- dataCopyA1Params.dstNzNStride = 1;
- dataCopyA1Params.dstNzMatrixStride = 0;
- DataCopy(a1Local, aGM[i * baseM * baseK], dataCopyA1Params);
- inQueueA1.EnQue(a1Local);
- }
- __aicore__ inline void SplitA()
- {
- LocalTensor<half> a1Local = inQueueA1.DeQue<half>();
- LocalTensor<half> a2Local = inQueueA2.AllocTensor<half>();
- // 左矩阵a1/a2分块从A1->A2
- LoadData2dParams loadL0AParams;
- loadL0AParams.repeatTimes = baseM * baseK * sizeof(half) / 512;
- loadL0AParams.srcStride = 1;
- loadL0AParams.dstGap = 0;
- LoadData(a2Local, a1Local, loadL0AParams);
- inQueueA2.EnQue(a2Local);
- inQueueA1.FreeTensor(a1Local);
- }
- __aicore__ inline void CopyInB1(uint32_t j)
- {
- LocalTensor<half> b1Local = inQueueB1.AllocTensor<half>();
- // 右矩阵分块b1/b2载入B1
- Nd2NzParams dataCopyB1Params;
- dataCopyB1Params.ndNum = 1;
- dataCopyB1Params.nValue = baseK;
- dataCopyB1Params.dValue = baseN;
- dataCopyB1Params.srcNdMatrixStride = 0;
- dataCopyB1Params.srcDValue = n;
- dataCopyB1Params.dstNzC0Stride = baseK;
- dataCopyB1Params.dstNzNStride = 1;
- dataCopyB1Params.dstNzMatrixStride = 0;
- DataCopy(b1Local, bGM[j * baseN], dataCopyB1Params);
- inQueueB1.EnQue(b1Local);
- }
- __aicore__ inline void SplitB()
- {
- LocalTensor<half> b1Local = inQueueB1.DeQue<half>();
- LocalTensor<half> b2Local = inQueueB2.AllocTensor<half>();
- // 右矩阵分块b1/b2从B1->B2
- LoadData2dTransposeParams loadL0BParams;
- loadL0BParams.startIndex = 0;
- loadL0BParams.repeatTimes = baseK / nBlockSize;
- loadL0BParams.srcStride = 1;
- loadL0BParams.dstGap = 1;
- LoadDataWithTranspose(b2Local, b1Local, loadL0BParams);
- inQueueB2.EnQue(b2Local);
- inQueueB1.FreeTensor(b1Local);
- }
- __aicore__ inline void Compute(uint32_t i, uint32_t j)
- {
- LocalTensor<half> a2Local = inQueueA2.DeQue<half>();
- LocalTensor<half> b2Local = inQueueB2.DeQue<half>();
- LocalTensor<float> c1Local = outQueueCO1.AllocTensor<float>();
- // 矩阵乘
- mmadParams.m = baseM;
- mmadParams.n = baseN;
- mmadParams.k = baseK;
- Mmad(c1Local[i * baseM * baseN + j * m * baseN], a2Local, b2Local, mmadParams);
- outQueueCO1.EnQue<float>(c1Local);
- inQueueA2.FreeTensor(a2Local);
- inQueueB2.FreeTensor(b2Local);
- }
- __aicore__ inline void CopyOut()
- {
- ...
- }
- private:
- TPipe pipe;
- TQue<QuePosition::A1, 1> inQueueA1;
- TQue<QuePosition::A2, 1> inQueueA2;
- TQue<QuePosition::B1, 1> inQueueB1;
- TQue<QuePosition::B2, 1> inQueueB2;
- TQue<QuePosition::CO1, 1> outQueueCO1;
-
- GlobalTensor<half> aGM;
- GlobalTensor<half> bGM;
- GlobalTensor<dst_T> cGM;
- uint16_t m = 1984, k = 256, n = 32;
- uint16_t baseM = 992, baseK = 256, baseN = 16;
- uint16_t aSize, bSize, cSize;
- uint16_t nBlockSize = 16;
- ...
复制代码 经过优化,将较小的右矩阵一次性搬入L1并长存于L1上,循环内不绝搬运A矩阵,当循环次数为2时,共需要3次搬运。
- ...
- public:
- __aicore__ inline KernelSample()
- {
- aSize = baseM * baseK;
- bSize = baseK * n;
- cSize = m * n;
- }
- __aicore__ inline void Init(__gm__ uint8_t *a, __gm__ uint8_t *b, __gm__ uint8_t *c)
- {
- aGM.SetGlobalBuffer((__gm__ half *)a);
- bGM.SetGlobalBuffer((__gm__ half *)b);
- cGM.SetGlobalBuffer((__gm__ float *)c);
- pipe.InitBuffer(inQueueA1, 1, aSize * sizeof(half));
- pipe.InitBuffer(inQueueA2, 1, aSize * sizeof(half));
- pipe.InitBuffer(inQueueB1, 1, bSize * sizeof(half));
- pipe.InitBuffer(inQueueB2, 2, bSize * sizeof(half));
- pipe.InitBuffer(outQueueCO1, 1, cSize * sizeof(float));
- }
- __aicore__ inline void Process()
- {
- CopyInB1();
- SplitB();
- for (uint32_t i = 0; i < 2; i++) {
- CopyInA1(i);
- SplitA();
- for (uint32_t j = 0; j < 2; j++) {
- Compute(i, j);
- }
- }
- CopyOut();
- }
- private:
- __aicore__ inline void CopyInB1()
- {
- LocalTensor<half> b1Local = inQueueB1.AllocTensor<half>();
- // 右矩阵全载入B1
- Nd2NzParams dataCopyB1Params;
- dataCopyB1Params.ndNum = 1;
- dataCopyB1Params.nValue = baseK;
- dataCopyB1Params.dValue = n;
- dataCopyB1Params.srcNdMatrixStride = 0;
- dataCopyB1Params.srcDValue = n;
- dataCopyB1Params.dstNzC0Stride = baseK;
- dataCopyB1Params.dstNzNStride = 1;
- dataCopyB1Params.dstNzMatrixStride = 0;
- DataCopy(b1Local, bGM, dataCopyB1Params);
- inQueueB1.EnQue(b1Local);
- }
- __aicore__ inline void SplitB()
- {
- LocalTensor<half> b1Local = inQueueB1.DeQue<half>();
- LocalTensor<half> b2Local = inQueueB2.AllocTensor<half>();
- // 右矩阵全部从B1->B2
- LoadData2dTransposeParams loadL0BParams;
- loadL0BParams.startIndex = 0;
- loadL0BParams.repeatTimes = baseK / nBlockSize;
- loadL0BParams.srcStride = 1;
- loadL0BParams.dstGap = 1;
- for (int blockNum = 0; blockNum < (n / nBlockSize); blockNum++) {
- LoadDataWithTranspose(b2Local[blockNum * 16 * nBlockSize], b1Local[blockNum * baseK * nBlockSize], loadL0BParams);
- }
- inQueueB2.EnQue(b2Local);
- inQueueB1.FreeTensor(b1Local);
- }
- __aicore__ inline void CopyInA1(uint32_t i)
- {
- LocalTensor<half> a1Local = inQueueA1.AllocTensor<half>();
- // 左矩阵a1/a2分块载入A1
- Nd2NzParams dataCopyA1Params;
- dataCopyA1Params.ndNum = 1;
- dataCopyA1Params.nValue = baseM;
- dataCopyA1Params.dValue = baseK;
- dataCopyA1Params.srcNdMatrixStride = 0;
- dataCopyA1Params.srcDValue = baseK;
- dataCopyA1Params.dstNzC0Stride = baseM;
- dataCopyA1Params.dstNzNStride = 1;
- dataCopyA1Params.dstNzMatrixStride = 0;
- DataCopy(a1Local, aGM[i * baseM * baseK], dataCopyA1Params);
- inQueueA1.EnQue(a1Local);
- }
- __aicore__ inline void SplitA()
- {
- LocalTensor<half> a1Local = inQueueA1.DeQue<half>();
- LocalTensor<half> a2Local = inQueueA2.AllocTensor<half>();
- // 左矩阵a1/a2分块从A1->A2
- LoadData2dParams loadL0AParams;
- loadL0AParams.repeatTimes = baseM * baseK * sizeof(half) / 512;
- loadL0AParams.srcStride = 1;
- loadL0AParams.dstGap = 0;
- LoadData(a2Local, a1Local, loadL0AParams);
- inQueueA2.EnQue(a2Local);
- inQueueA1.FreeTensor(a1Local);
- }
- __aicore__ inline void Compute(uint32_t i, uint32_t j)
- {
- LocalTensor<half> a2Local = inQueueA2.DeQue<half>();
- LocalTensor<half> b2Local = inQueueB2.DeQue<half>();
- LocalTensor<float> c1Local = outQueueCO1.AllocTensor<float>();
- // 矩阵乘
- mmadParams.m = baseM;
- mmadParams.n = baseN;
- mmadParams.k = baseK;
- Mmad(c1Local[i * baseM * baseN + j * m * baseN], a2Local, b2Local, mmadParams);
- outQueueCO1.EnQue<float>(c1Local);
- inQueueA2.FreeTensor(a2Local);
- inQueueB2.FreeTensor(b2Local);
- }
- __aicore__ inline void CopyOut()
- {
- ...
- }
- private:
- TPipe pipe;
- TQue<QuePosition::A1, 1> inQueueA1;
- TQue<QuePosition::A2, 1> inQueueA2;
- TQue<QuePosition::B1, 1> inQueueB1;
- TQue<QuePosition::B2, 1> inQueueB2;
- TQue<QuePosition::CO1, 1> outQueueCO1;
-
- GlobalTensor<half> aGM;
- GlobalTensor<half> bGM;
- GlobalTensor<dst_T> cGM;
- uint16_t m = 1984, k = 256, n = 32;
- uint16_t baseM = 992, baseK = 256, baseN = 16;
- uint16_t aSize, bSize, cSize;
- uint16_t nBlockSize = 16;
- ...
复制代码
通过BT Buffer实现高效的bias计算
算子中举行带bias的矩阵乘计算时,可将bias数据搬运至C2(Bias Table Buffer)上,调用一次Mmad接口实现矩阵乘加bias的计算。相比于先将矩阵乘的结果从CO1(L0C)搬运到GM上,再搬运到UB上举行加bias的过程,减少了数据搬运的次数,可提拔内存利用效率。数据流图对比如下:
图7优化前数据流图
图8优化后数据流图
在优化前,算子举行带bias的矩阵乘计算时,过程如下:
- 将矩阵乘的计算结果从CO1(L0C)搬运到workspace上;
- 从workspace搬运到UB上;
- 在UB上举行加bias的运算;
- 末了将结果搬运到GM。
当循环n次该计算过程,则分别增长了n次CO1->workspace、workspace->UB的搬运。
- // 该样例仅做示例说明,非完整代码,省略了部分同步控制代码
- public:
- __aicore__ inline KernelSample()
- {
- aSize = m * k;
- bSize = k * n;
- cSize = m * n;
- }
- __aicore__ inline void Init(__gm__ uint8_t *a, __gm__ uint8_t *b, __gm__ uint8_t *bias, __gm__ uint8_t *c)
- {
- aGM.SetGlobalBuffer((__gm__ half *)a);
- bGM.SetGlobalBuffer((__gm__ half *)b);
- cGM.SetGlobalBuffer((__gm__ float *)c);
- biasGM.SetGlobalBuffer((__gm__ float *)bias);
- pipe.InitBuffer(inQueueA1, 1, aSize * sizeof(half));
- pipe.InitBuffer(inQueueA2, 1, aSize * sizeof(half));
- pipe.InitBuffer(inQueueB1, 1, bSize * sizeof(half));
- pipe.InitBuffer(inQueueB2, 2, bSize * sizeof(half));
- pipe.InitBuffer(outQueueCO1, 1, cSize * sizeof(float));
- pipe.InitBuffer(inQueueBias, 1, n * sizeof(float));
- pipe.InitBuffer(inQueueSrc0, 1, cSize * sizeof(float));
- pipe.InitBuffer(outQueueDst, 1, cSize * sizeof(float));
-
- }
- __aicore__ inline void Process()
- {
- CopyIn();
- SplitA();
- SplitB();
- Compute();
- CopyOut();
- CopyIn1();
- Compute1();
- CopyOut1();
- }
- private:
- __aicore__ inline void CopyIn()
- {
- LocalTensor<half> a1Local = inQueueA1.AllocTensor<half>();
- LocalTensor<half> b1Local = inQueueB1.AllocTensor<half>();
- LocalTensor<float> biasLocal = inQueueBias.AllocTensor<float>();
-
- Nd2NzParams dataCopyA1Params;
- dataCopyA1Params.ndNum = 1;
- dataCopyA1Params.nValue = m;
- dataCopyA1Params.dValue = k;
- dataCopyA1Params.srcNdMatrixStride = 0;
- dataCopyA1Params.srcDValue = k;
- dataCopyA1Params.dstNzC0Stride = m;
- dataCopyA1Params.dstNzNStride = 1;
- dataCopyA1Params.dstNzMatrixStride = 0;
- DataCopy(a1Local, aGM, dataCopyA1Params);
-
- Nd2NzParams dataCopyB1Params;
- dataCopyB1Params.ndNum = 1;
- dataCopyB1Params.nValue = k;
- dataCopyB1Params.dValue = n;
- dataCopyB1Params.srcNdMatrixStride = 0;
- dataCopyB1Params.srcDValue = n;
- dataCopyB1Params.dstNzC0Stride = k;
- dataCopyB1Params.dstNzNStride = 1;
- dataCopyB1Params.dstNzMatrixStride = 0;
- DataCopy(b1Local, bGM, dataCopyB1Params);
- // 将bias搬运到UB
- DataCopy(biasLocal, biasGM, n);
-
- inQueueA1.EnQue(a1Local);
- inQueueB1.EnQue(b1Local);
- inQueueBias.EnQue(biasLocal);
- }
- __aicore__ inline void SplitA()
- {
- ...
- }
- __aicore__ inline void SplitB()
- {
- ...
- }
- __aicore__ inline void Compute()
- {
- LocalTensor<half> a2Local = inQueueA2.DeQue<half>();
- LocalTensor<half> b2Local = inQueueB2.DeQue<half>();
- LocalTensor<float> c1Local = outQueueCO1.AllocTensor<float>();
- MmadParams mmadParams;
- mmadParams.m = m;
- mmadParams.n = n;
- mmadParams.k = k;
- // 矩阵乘
- Mmad(c1Local, a2Local, b2Local, mmadParams); // m*n
- outQueueCO1.EnQue<float>(c1Local);
- inQueueA2.FreeTensor(a2Local);
- inQueueB2.FreeTensor(b2Local);
- }
- __aicore__ inline void CopyOut()
- {
- LocalTensor<float> c1Local = outQueueCO1.DeQue<float>();
- GM_ADDR usrWorkspace = AscendC::GetUserWorkspace(workspace);
- xGm.SetGlobalBuffer((__gm__ float *)(usrWorkspace));
- FixpipeParamsV220 fixpipeParams;
- fixpipeParams.nSize = n;
- fixpipeParams.mSize = m;
- fixpipeParams.srcStride = m;
- fixpipeParams.dstStride = n;
- fixpipeParams.ndNum = 1;
- fixpipeParams.srcNdStride = 0;
- fixpipeParams.dstNdStride = 0;
- // 将矩阵乘的计算结果从CO1搬运到workspace
- Fixpipe(xGm, c1Local, fixpipeParams);
- outQueueCO1.FreeTensor(c1Local);
- }
- __aicore__ inline void CopyIn1()
- {
- PipeBarrier<PIPE_ALL>();
- // 将矩阵乘的计算结果从workspace搬运到UB
- LocalTensor<float> src0Local = inQueueSrc0.AllocTensor<float>();
- DataCopy(src0Local, xGm, cSize);
- inQueueSrc0.EnQue(src0Local);
- }
- __aicore__ inline void Compute1()
- {
- LocalTensor<float> src0Local = inQueueSrc0.DeQue<float>();
- LocalTensor<float> biasLocal = inQueueBias.DeQue<float>();
- LocalTensor<float> dstLocal = outQueueDst.AllocTensor<float>();
- BinaryRepeatParams addRepeatParams;
- addRepeatParams.dstRepStride = 8;
- addRepeatParams.src0RepStride = 8;
- addRepeatParams.src1RepStride = 0;
- // 加bias的运算
- Add(dstLocal, src0Local, biasLocal, 32, m, addRepeatParams);
- outQueueDst.EnQue<float>(dstLocal);
- inQueueSrc0.FreeTensor(src0Local);
- inQueueBias.FreeTensor(biasLocal);
- }
- __aicore__ inline void CopyOut1()
- {
- ...
- }
- private:
- TPipe pipe;
- TQue<QuePosition::A1, 1> inQueueA1;
- TQue<QuePosition::A2, 1> inQueueA2;
- TQue<QuePosition::B1, 1> inQueueB1;
- TQue<QuePosition::B2, 1> inQueueB2;
- TQue<QuePosition::VECIN, 1> inQueueBias;
- TQue<QuePosition::VECIN, 1> inQueueSrc0;
- TQue<QuePosition::VECOUT, 1> outQueueDst;
-
- GlobalTensor<half> aGM;
- GlobalTensor<half> bGM;
- GlobalTensor<dst_T> cGM;
- GlobalTensor<float> biasGM;
- uint16_t m = 32, k = 32, n = 32;
- uint16_t aSize, bSize, cSize;
- ...
复制代码 经过优化,该算子举行带bias的矩阵乘计算时,先将bias搬运到BT上,调用一次Mmad接口实现矩阵乘加bias的计算。
- ...
- // 该样例仅做示例说明,非完整代码,省略了部分同步控制代码
- public:
- __aicore__ inline KernelSample()
- {
- aSize = m * k;
- bSize = k * n;
- cSize = m * n;
- }
- __aicore__ inline void Init(__gm__ uint8_t *a, __gm__ uint8_t *b, __gm__ uint8_t *bias, __gm__ uint8_t *c)
- {
- aGM.SetGlobalBuffer((__gm__ half *)a);
- bGM.SetGlobalBuffer((__gm__ half *)b);
- cGM.SetGlobalBuffer((__gm__ float *)c);
- biasGM.SetGlobalBuffer((__gm__ float *)bias);
- pipe.InitBuffer(inQueueA1, 1, aSize * sizeof(half));
- pipe.InitBuffer(inQueueA2, 1, aSize * sizeof(half));
- pipe.InitBuffer(inQueueB1, 1, bSize * sizeof(half));
- pipe.InitBuffer(inQueueB2, 2, bSize * sizeof(half));
- pipe.InitBuffer(outQueueCO1, 1, cSize * sizeof(float));
- pipe.InitBuffer(inQueueC1, 1, n * sizeof(float));
- pipe.InitBuffer(outQueueC2, 1, n * sizeof(float));
- }
- __aicore__ inline void Process()
- {
- CopyIn();
- SplitA();
- SplitB();
- SplitBias();
- Compute();
- CopyOut();
- }
- private:
- __aicore__ inline void CopyIn()
- {
- LocalTensor<half> a1Local = inQueueA1.AllocTensor<half>();
- LocalTensor<half> b1Local = inQueueB1.AllocTensor<half>();
- LocalTensor<float> bias1Local = inQueueC1.AllocTensor<float>();
-
- Nd2NzParams dataCopyA1Params;
- dataCopyA1Params.ndNum = 1;
- dataCopyA1Params.nValue = m;
- dataCopyA1Params.dValue = k;
- dataCopyA1Params.srcNdMatrixStride = 0;
- dataCopyA1Params.srcDValue = k;
- dataCopyA1Params.dstNzC0Stride = m;
- dataCopyA1Params.dstNzNStride = 1;
- dataCopyA1Params.dstNzMatrixStride = 0;
- DataCopy(a1Local, aGM, dataCopyA1Params);
-
- Nd2NzParams dataCopyB1Params;
- dataCopyB1Params.ndNum = 1;
- dataCopyB1Params.nValue = k;
- dataCopyB1Params.dValue = n;
- dataCopyB1Params.srcNdMatrixStride = 0;
- dataCopyB1Params.srcDValue = n;
- dataCopyB1Params.dstNzC0Stride = k;
- dataCopyB1Params.dstNzNStride = 1;
- dataCopyB1Params.dstNzMatrixStride = 0;
- DataCopy(b1Local, bGM, dataCopyB1Params);
- // 将bias从GM搬运到L1
- DataCopy(bias1Local, biasGM, n);
-
- inQueueA1.EnQue(a1Local);
- inQueueB1.EnQue(b1Local);
- inQueueC1.EnQue(bias1Local);
- }
- __aicore__ inline void SplitA()
- {
- ...
- }
- __aicore__ inline void SplitB()
- {
- ...
- }
- __aicore__ inline void SplitBias()
- {
- LocalTensor<float> bias1Local = inQueueC1.DeQue<float>();
- LocalTensor<float> bias2Local = outQueueC2.AllocTensor<float>();
- // 将bias从L1搬运到BT
- DataCopy(bias2Local, bias1Local, { 1, (uint16_t)(n * sizeof(float) / 64), 0, 0 });
- outQueueC2.EnQue<float>(bias2Local);
- inQueueC1.FreeTensor(bias1Local);
- }
- __aicore__ inline void Compute()
- {
- LocalTensor<half> a2Local = inQueueA2.DeQue<half>();
- LocalTensor<half> b2Local = inQueueB2.DeQue<half>();
- LocalTensor<float> bias2Local = outQueueC2.DeQue<float>();
- LocalTensor<float> c1Local = outQueueCO1.AllocTensor<float>();
- MmadParams mmadParams;
- mmadParams.m = m;
- mmadParams.n = n;
- mmadParams.k = k;
- mmadParams.cmatrixInitVal = false;
- // 矩阵乘
- Mmad(c1Local, a2Local, b2Local, bias2Local, mmadParams);
- outQueueCO1.EnQue<float>(c1Local);
- inQueueA2.FreeTensor(a2Local);
- inQueueB2.FreeTensor(b2Local);
- outQueueC2.FreeTensor(bias2Local);
- }
- __aicore__ inline void CopyOut()
- {
- LocalTensor<float> c1Local = outQueueCO1.DeQue<float>();
- FixpipeParamsV220 fixpipeParams;
- fixpipeParams.nSize = n;
- fixpipeParams.mSize = m;
- fixpipeParams.srcStride = m;
- fixpipeParams.dstStride = n;
-
- fixpipeParams.ndNum = 1;
- fixpipeParams.srcNdStride = 0;
- fixpipeParams.dstNdStride = 0;
- Fixpipe(cGM, c1Local, fixpipeParams);
- outQueueCO1.FreeTensor(c1Local);
- }
- private:
- TPipe pipe;
- TQue<QuePosition::A1, 1> inQueueA1;
- TQue<QuePosition::A2, 1> inQueueA2;
- TQue<QuePosition::B1, 1> inQueueB1;
- TQue<QuePosition::B2, 1> inQueueB2;
- TQue<QuePosition::CO1, 1> outQueueCO1;
- TQue<QuePosition::C1, 1> inQueueC1;
- TQue<QuePosition::C2, 1> outQueueC2;
-
- GlobalTensor<half> aGM;
- GlobalTensor<half> bGM;
- GlobalTensor<dst_T> cGM;
- GlobalTensor<float> biasGM;
- uint16_t m = 32, k = 32, n = 32;
- uint16_t aSize, bSize, cSize;
复制代码
通过FP Buffer存放量化参数实现高效随路量化
算子实现中对矩阵乘结果举行量化计算时,可将量化参数搬运到C2PIPE2GM(Fixpipe Buffer)上,调用一次Fixpipe接口实现矩阵乘结果的量化计算。相比于将矩阵乘的结果从CO1(L0C)搬运到GM,再从GM搬运到UB,在UB举行量化计算的过程,数据搬运的次数更少,内存利用效率更高。
图9优化前数据流图
图10优化后数据流图
在优化前,对矩阵乘结果举行量化计算的过程如下:
- 将矩阵乘的结果从CO1搬运到workspace上;
- 再从workspace搬运到UB上;
- 将量化参数搬运到UB上,和矩阵乘的结果一起在UB上举行一系列量化计算;
- 将最终量化结果从UB搬运到GM上。
相比于正确示例多增长了CO1->workspace、workspace->UB的搬运过程和量化的vector计算。
- ...
- // 该样例仅做示例说明,非完整代码,省略了部分同步控制代码
- public:
- __aicore__ inline KernelSample()
- {
- aSize = m * k;
- bSize = k * n;
- cSize = m * n;
- }
- __aicore__ inline void Init(__gm__ uint8_t *a, __gm__ uint8_t *b, __gm__ uint8_t *c, __gm__ uint8_t *deqTensor)
- {
- aGM.SetGlobalBuffer((__gm__ half *)a);
- bGM.SetGlobalBuffer((__gm__ half *)b);
- cGM.SetGlobalBuffer((__gm__ float *)c);
- deqGM.SetGlobalBuffer((__gm__ half *)deqTensor);
- pipe.InitBuffer(inQueueA1, 1, aSize * sizeof(half));
- pipe.InitBuffer(inQueueA2, 1, aSize * sizeof(half));
- pipe.InitBuffer(inQueueB1, 1, bSize * sizeof(half));
- pipe.InitBuffer(inQueueB2, 2, bSize * sizeof(half));
- pipe.InitBuffer(outQueueCO1, 1, cSize * sizeof(float));
- pipe.InitBuffer(inQueueSrc0, 1, cSize * sizeof(float));
- pipe.InitBuffer(inQueueTmp, 1, cSize * sizeof(half));
- pipe.InitBuffer(inQueueDeq, 1, cSize * sizeof(half));
- pipe.InitBuffer(outQueueDst, 1, cSize * sizeof(int8_t));
- }
- __aicore__ inline void Process()
- {
- CopyIn();
- SplitA();
- SplitB();
- Compute();
- CopyOut();
- CopyIn1();
- Compute1();
- CopyOut1();
- }
- private:
- __aicore__ inline void CopyIn()
- {
- LocalTensor<half> a1Local = inQueueA1.AllocTensor<half>();
- LocalTensor<half> b1Local = inQueueB1.AllocTensor<half>();
- LocalTensor<half> deqLocal = inQueueDeq.AllocTensor<half>();
-
- Nd2NzParams dataCopyA1Params;
- dataCopyA1Params.ndNum = 1;
- dataCopyA1Params.nValue = m;
- dataCopyA1Params.dValue = k;
- dataCopyA1Params.srcNdMatrixStride = 0;
- dataCopyA1Params.srcDValue = k;
- dataCopyA1Params.dstNzC0Stride = m;
- dataCopyA1Params.dstNzNStride = 1;
- dataCopyA1Params.dstNzMatrixStride = 0;
- DataCopy(a1Local, aGM, dataCopyA1Params);
-
- Nd2NzParams dataCopyB1Params;
- dataCopyB1Params.ndNum = 1;
- dataCopyB1Params.nValue = k;
- dataCopyB1Params.dValue = n;
- dataCopyB1Params.srcNdMatrixStride = 0;
- dataCopyB1Params.srcDValue = n;
- dataCopyB1Params.dstNzC0Stride = k;
- dataCopyB1Params.dstNzNStride = 1;
- dataCopyB1Params.dstNzMatrixStride = 0;
- DataCopy(b1Local, bGM, dataCopyB1Params);
- // 将量化参数搬运到UB
- DataCopy(deqLocal, deqGM, cSize);
-
- inQueueA1.EnQue(a1Local);
- inQueueB1.EnQue(b1Local);
- inQueueDeq.EnQue(deqLocal);
- }
- __aicore__ inline void SplitA()
- {
- ...
- }
- __aicore__ inline void SplitB()
- {
- ...
- }
- __aicore__ inline void Compute()
- {
- LocalTensor<half> a2Local = inQueueA2.DeQue<half>();
- LocalTensor<half> b2Local = inQueueB2.DeQue<half>();
- LocalTensor<float> c1Local = outQueueCO1.AllocTensor<float>();
- MmadParams mmadParams;
- mmadParams.m = m;
- mmadParams.n = n;
- mmadParams.k = k;
- // 矩阵乘
- Mmad(c1Local, a2Local, b2Local, mmadParams); // m*n
- outQueueCO1.EnQue<float>(c1Local);
- inQueueA2.FreeTensor(a2Local);
- inQueueB2.FreeTensor(b2Local);
- }
- __aicore__ inline void CopyOut()
- {
- LocalTensor<float> c1Local = outQueueCO1.DeQue<float>();
- GM_ADDR usrWorkspace = AscendC::GetUserWorkspace(workspace);
- xGm.SetGlobalBuffer((__gm__ float *)(usrWorkspace));
- FixpipeParamsV220 fixpipeParams;
- fixpipeParams.nSize = n;
- fixpipeParams.mSize = m;
- fixpipeParams.srcStride = m;
- fixpipeParams.dstStride = n;
- fixpipeParams.ndNum = 1;
- fixpipeParams.srcNdStride = 0;
- fixpipeParams.dstNdStride = 0;
- // 将矩阵乘的计算结果从CO1搬运到workspace
- Fixpipe(xGm, c1Local, fixpipeParams);
- outQueueCO1.FreeTensor(c1Local);
- }
- __aicore__ inline void CopyIn1()
- {
- PipeBarrier<PIPE_ALL>();
- // 将矩阵乘的计算结果从workspace搬运到UB
- LocalTensor<float> src0Local = inQueueSrc0.AllocTensor<float>();
- DataCopy(src0Local, xGm, cSize);
- inQueueSrc0.EnQue(src0Local);
- }
- __aicore__ inline void Compute1()
- {
- LocalTensor<float> src0Local = inQueueSrc0.DeQue<float>();
- LocalTensor<half> tmpLocal = inQueueTmp.AllocTensor<half>();
- LocalTensor<half> deqLocal = inQueueDeq.DeQue<half>();
- LocalTensor<int8_t> dstLocal = outQueueDst.AllocTensor<int8_t>();
- // 量化计算
- Cast(tmpLocal, src0Local, RoundMode::CAST_NONE, cSize);
- LocalTensor<half> tmpHalfBuffer = src0Local.ReinterpretCast<half>();
- Mul(tmpHalfBuffer, tmpLocal, deqLocal, cSize);
- Cast(dstLocal, tmpHalfBuffer, RoundMode::CAST_NONE, cSize);
- outQueueDst.EnQue<int8_t>(dstLocal);
- inQueueSrc0.FreeTensor(src0Local);
- inQueueTmp.FreeTensor(tmpLocal);
- inQueueDeq.FreeTensor(deqLocal);
- }
- __aicore__ inline void CopyOut1()
- {
- ...
- }
- private:
- TPipe pipe;
- TQue<QuePosition::A1, 1> inQueueA1;
- TQue<QuePosition::A2, 1> inQueueA2;
- TQue<QuePosition::B1, 1> inQueueB1;
- TQue<QuePosition::B2, 1> inQueueB2;
- TQue<QuePosition::CO1, 1> outQueueCO1;
- TQue<QuePosition::VECIN, 1> inQueueDeq;
- TQue<QuePosition::VECIN, 1> inQueueSrc0;
- TQue<QuePosition::VECCALC, 1> inQueueTmp;
- TQue<QuePosition::VECOUT, 1> outQueueDst;
-
- GlobalTensor<half> aGM;
- GlobalTensor<half> bGM;
- GlobalTensor<dst_T> cGM;
- GlobalTensor<float> biasGM;
- uint16_t m = 32, k = 32, n = 32;
- uint16_t aSize, bSize, cSize;
- ...
复制代码 经过优化,该算子对矩阵乘的结果举行量化计算时,可将量化参数搬运到FB(Fixpipe Buffer)上,调用一次Fixpipe接口实现矩阵乘结果的量化计算。
- ...
- public:
- __aicore__ inline KernelSample()
- {
- aSize = m * k;
- bSize = k * n;
- cSize = m * n;
- }
- __aicore__ inline void Init(__gm__ uint8_t *a, __gm__ uint8_t *b, __gm__ uint8_t *c, __gm__ uint8_t *deqTensor)
- {
- aGM.SetGlobalBuffer((__gm__ half *)a);
- bGM.SetGlobalBuffer((__gm__ half *)b);
- cGM.SetGlobalBuffer((__gm__ float *)c);
- deqGM.SetGlobalBuffer((__gm__ uint64_t *)deqTensor);
- pipe.InitBuffer(inQueueA1, 1, aSize * sizeof(half));
- pipe.InitBuffer(inQueueA2, 1, aSize * sizeof(half));
- pipe.InitBuffer(inQueueB1, 1, bSize * sizeof(half));
- pipe.InitBuffer(inQueueB2, 2, bSize * sizeof(half));
- pipe.InitBuffer(outQueueCO1, 1, cSize * sizeof(float));
- pipe.InitBuffer(inQueueDeq1, 1, cSize * sizeof(uint64_t));
- pipe.InitBuffer(inQueueDeq, 1, cSize * sizeof(uint64_t));
- }
- __aicore__ inline void Process()
- {
- CopyIn();
- SplitA();
- SplitB();
- SplitDeq();
- Compute();
- CopyOut();
- }
- private:
- __aicore__ inline void CopyIn()
- {
- LocalTensor<half> a1Local = inQueueA1.AllocTensor<half>();
- LocalTensor<half> b1Local = inQueueB1.AllocTensor<half>();
- LocalTensor<uint64_t> deq1Local = inQueueDeq1.AllocTensor<uint64_t>();
-
- Nd2NzParams dataCopyA1Params;
- dataCopyA1Params.ndNum = 1;
- dataCopyA1Params.nValue = m;
- dataCopyA1Params.dValue = k;
- dataCopyA1Params.srcNdMatrixStride = 0;
- dataCopyA1Params.srcDValue = k;
- dataCopyA1Params.dstNzC0Stride = m;
- dataCopyA1Params.dstNzNStride = 1;
- dataCopyA1Params.dstNzMatrixStride = 0;
- DataCopy(a1Local, aGM, dataCopyA1Params);
-
- Nd2NzParams dataCopyB1Params;
- dataCopyB1Params.ndNum = 1;
- dataCopyB1Params.nValue = k;
- dataCopyB1Params.dValue = n;
- dataCopyB1Params.srcNdMatrixStride = 0;
- dataCopyB1Params.srcDValue = n;
- dataCopyB1Params.dstNzC0Stride = k;
- dataCopyB1Params.dstNzNStride = 1;
- dataCopyB1Params.dstNzMatrixStride = 0;
- DataCopy(b1Local, bGM, dataCopyB1Params);
- // 将量化参数搬运到L1上
- DataCopy(deq1Local, deqGM, cSize);
-
- inQueueA1.EnQue(a1Local);
- inQueueB1.EnQue(b1Local);
- inQueueDeq.EnQue(deq1Local);
- }
- __aicore__ inline void SplitA()
- {
- ...
- }
- __aicore__ inline void SplitB()
- {
- ...
- }
- __aicore__ inline void SplitDeq()
- {
- LocalTensor<uint64_t> deq1Local = inQueueDeq1.DeQue<uint64_t>();
- LocalTensor<uint64_t> deqLocal = inQueueDeq.AllocTensor<uint64_t>();
- // 将量化参数从L1->FB
- DataCopy(deqLocal, deq1Local, { 1, (uint16_t)(cSize * sizeof(uint64_t) / 128), 0, 0 });
- inQueueDeq.EnQue<uint61_t>(deqLocal);
- inQueueDeq1.FreeTensor(deq1Local);
- }
- __aicore__ inline void Compute()
- {
- LocalTensor<half> a2Local = inQueueA2.DeQue<half>();
- LocalTensor<half> b2Local = inQueueB2.DeQue<half>();
- LocalTensor<float> c1Local = outQueueCO1.AllocTensor<float>();
- MmadParams mmadParams;
- mmadParams.m = m;
- mmadParams.n = n;
- mmadParams.k = k;
- // 矩阵乘
- Mmad(c1Local, a2Local, b2Local, mmadParams); // m*n
- outQueueCO1.EnQue<float>(c1Local);
- inQueueA2.FreeTensor(a2Local);
- inQueueB2.FreeTensor(b2Local);
- }
- __aicore__ inline void CopyOut()
- {
- LocalTensor<float> c1Local = outQueueCO1.DeQue<float>();
- LocalTensor<uint64_t> deqLocal = inQueueDeq.DeQue<uint64_t>();
- SetFixpipeNz2ndFlag(1, 0, 0);
- DataCopyCO12DstParams dataCopyParams;
- dataCopyParams.nSize = n;
- dataCopyParams.mSize = m;
- dataCopyParams.srcStride = m;
- dataCopyParams.dstStride = n;
- dataCopyParams.quantPre = QuantMode_t::VQF322B8_PRE;
- dataCopyParams.nz2ndEn = true;
- // 将矩阵乘进行量化后的计算结果搬出
- DataCopy(cGM, c1Local, DataCopyCO12DstParams);
- outQueueCO1.FreeTensor(c1Local);
- }
-
- private:
- TPipe pipe;
- TQue<QuePosition::A1, 1> inQueueA1;
- TQue<QuePosition::A2, 1> inQueueA2;
- TQue<QuePosition::B1, 1> inQueueB1;
- TQue<QuePosition::B2, 1> inQueueB2;
- TQue<QuePosition::C1, 1> inQueueDeq1;
- TQue<QuePosition::C2PIPE2GM, 1> inQueueDeq;
- TQue<QuePosition::CO1, 1> outQueueCO1;
- GlobalTensor<half> aGM;
- GlobalTensor<half> bGM;
- GlobalTensor<dst_T> cGM;
- GlobalTensor<uint64_t> deqTensorGM;
- uint16_t m = 32, k = 32, n = 32;
- uint16_t aSize, bSize, cSize;
- ...
复制代码 更多学习资源
了解更多Ascend C算子性能优化手段和实践案例,请访问:昇腾Ascend C-入门课程-学习资源-算子文档-昇腾社区
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!更多信息从访问主页:qidao123.com:ToB企服之家,中国第一个企服评测及商务社交产业平台。 |